「core」を含む日記 RSS

はてなキーワード: coreとは

2011-12-29

Portable electronic equipment battery technology

1, about the trickle charge, rapid charging and stable battery charging algorithm

According to the energy requirements of the final application, a battery may contain up to 4 lithium ion or lithium polymer battery core, its configuration will have a variety of change, at the same time with a mainstream power adapter: direct adapter, USB interface or car charger. Remove the core quantity, core configuration or power adapter type difference, the battery has the same charge characteristics. So they charge algorithm. Lithium ion and li-ion polymer battery best charging algorithm can divided into three phases: trickle charge, rapid charging and stable charge.

trickle charge. For depth discharge core to charge. When core voltage in less than about 2.8 V, use a constant 0.1 C of the current charging for it.

fast charging. Core voltage trickle charge more than the threshold, improve the charging current rapid charging. Fast charging current should be lower than 1.0 C.

stable voltage. In the fast charging process, once the core 4.2 V voltage, stable voltage phase began. This is through the minimum charge current or timer or of the two joint to interrupt charge. When the minimum current below about 0.07 C, can interrupt charge. The timer is to rely on a default to trigger the timer interrupt.

Advanced battery charger with additional security function normally. For example, if the core temperature exceeds the given window, usually 0 ℃-45 ℃, charge will be suspended.

Remove some very low-end equipment, now on the market/li-ion polymer lithium ion battery solutions are integrated with the outer components or, in accordance with the characteristics of the charging to charge, this is not just to get better effect charge, but also for safety.

lithium ion/polymer battery charge is an example of applications-double input 1.2 A lithium battery charger LTC4097

LTC4097 can be used to exchange adapter or USB power supply for single quarter/polymer lithium ion battery. Figure 1 for double input 1.2 A lithium battery charger LTC4097 schemes. It USES constant current/constant voltage algorithm charging, from exchange adapter power charge, programmable filling up to 1.2 electric current A, and with USB power can be as high as 1 A, at the same time, automatic detection in each input voltage whether there. This device also provide USB the current limit. Applications include PDA, MP3 players, digital camera, light portable medical and test equipment and big color cellular phone. The performance characteristics: no external micro controller charging termination; The input power automatic detection and choice; Through the resistance from the exchange of charging adapter input can be as high as 1.2 A programming charge current; The resistance of programmable USB charging current is up to 1 A; 100% or 20% USB charging current set; The input power output and existing bias NTC (VNTC) pin as a 120 mA drive ability; NTC thermistors input (NTC) pin for temperature qualified charged; Pre-settings battery voltage with floating plus or minus 0.6% accuracy; Thermal regulation maximize charge rate and free hot air LTC4097 can be used to exchange adapter or USB power supply for single quarter/polymer lithium ion battery. The use of constant current/constant voltage algorithm charging, from exchange adapter power charge, programmable filling up to 1.2 electric current A, and with USB power can be as high as 1 A, at the same time, automatic detection in each input voltage whether there. This device also provide USB the current limit. Applications include PDA, MP3 players, digital camera, light portable medical and test equipment and big color cellular phone.

2, lithium ion/polymer battery scheme

Lithium ion/polymer battery charge scheme for different number of core, core configuration, and power types are different. At present mainly have three main charging scheme: linear, Buck (step-down) switch and SEPIC (booster and step-down) switch.

2.1 linear scheme

When the input voltage in big with the charger with sufficient clearance of core after opening voltage, it is linear scheme, especially 1.0 C fast charging current than 1 A big too much. For example, MP3 players usually only one core, capacity from 700 to 1500 mAh differ, full charge voltage is open 4.2 V. MP3 player power is usually the AC/DC adapter or USB interface, the output is the rule of 5 V; At this time, the linear scheme is the most simple, most charger of the efficiency of the scheme. Figure 2 shows for lithium ion/polymer battery solution linear scheme, basic structure and linear voltage neat device.

linear scheme charger application examples-double input Li + charger and intelligent power source selector MAX8677A

MAX8677A is double input USB/AC adapter linear charger, built-in Smart Power Selector, used for rechargeable single quarter by Li + batteries portable devices. The charger integration of the battery and the external power source and load switch charging all the power switch, so that no external MOSFET. MAX8677A ideal used in portable devices, such as smart phones, PDA, portable media players, GPS navigation equipment, digital camera, and digital cameras.

MAX8677A can work in independent USB and the power input AC adapter or two input either one of the input. When connecting external power supply, intelligent power source selector allows the system not connect battery or can and depth discharge battery connection. Intelligent power source selector will automatically switch to the battery system load, use the system did not use the input power supply parts for battery, make full use of limited USB and adapter power supply input. All the needed electric current detection circuit, including the integration of the power switch, all integration in the piece. DC input current highest limit can be adjusted to 2 A and DC and USB input all can support 100 mA, 500 mA, and USB hung mode. Charge current can be adjusted to as high as 1.5 A, thus support wide range of battery capacitive. Other features include MAX8677A thermal regulation, over-voltage protection, charging status and fault output, power supply good surveillance, battery thermistors surveillance, and charging timer. MAX8677A using save a space, hot enhanced, 4 mm x 4 mm, 24 of the pins TQFN encapsulation, regulations, work in exceptional temperature range (40 ~ + 85 ℃).

2.2 Buck (step-down) switch scheme

When A 1.0 C of the charging current more than 1 A, or the input voltage of the core than with high voltage open many, Buck or step-down plan is A better choice. For example, based on the hard drive in the PMP, often use single core lithium ion battery, the full of open is 4.2 V voltage, capacity from 1200 to 2400 mAh range. And now PMP is usually use the car kit to charge, its output voltage in a 9 V to 16 between V. In the input voltage and battery voltage is the voltage difference between high (minimum 4.8 V) will make linear scheme lowers efficiency. This kind of low efficiency, plus more than 1.2 A 1 C fast charging electric current, have serious heat dissipation problems. To avoid this kind of situation, will the Buck scheme. Figure 3 for lithium ion/polymer battery charger scheme Buck diagram, basic structure with Buck (step-down) switching voltage regulators completely the same.

2.3 SEPIC (booster and step-down) switch scheme

In some use of three or four lithium ion/polymer core series equipments, charger of the input voltage is not always greater than the battery voltage. For example, laptop computers use 3 core lithium ion battery, full charge voltage is open 12.6 V (4.2 V x3), capacity is 1800 mAh to 3600 mAh from. Power supply input or output voltage is 1 6 V AC/DC adapter, or is car kit, the output voltage in a 9 V to 16 between V. Apparently, the linear and Buck solutions are not for this group of batteries. This is about to use SEPIC scheme, it can in the output voltage is higher than when the battery voltage, can be in the output voltage less than when the battery.

3, and power detection algorithm is proposed

Many portable products use voltage measurements to estimate the remaining battery power, but the battery voltage and surplus power relationship but will with the discharge rate, temperature and battery aging degree of change, make this kind of method can top 50% margin of error. The market for longer to use product demand unceasingly strengthens, so the system design personnel need more accurate solution. Use capacity check plan come to measure battery or consumption of electricity, will be in a wide range of application power to provide more accurate estimate of the battery power.

3.1 power detection algorithm is one of the examples of application, function complete list, double the battery portable battery application design

power detection principle. Good capacity check plan at least to have battery voltage, temperature and battery electric current, measuring method; A micro 9 a; And a set of and the verification of the punishment power detection algorithm is proposed. Bq2650x and bq27x00 is full capacity check program function, with a measuring voltage and temperature of the digital converter (ADC) and a measuring electric current and charging sensor the asp. These capacity check plan also has a microprocessor, is responsible for the implementation of the Texas instruments power detection algorithm is proposed. The algorithm can compensate the lithium ion battery life.low self-discharge, aging, the temperature and discharge rate, and other factors. Chip embedded microprocessor as host system processor save these calculation burden. Capacity check program can provide remaining power state information, bq27x00 series products also offer surplus can Run Time (Run Time to Empty) host may at any Time to capacity check plan these information query, then LED indicator light through or displays will inform the user battery. Capacity check meter is very easy to use, the system processor need only configuration 12 C or HDQ communication drive can.

The battery circuit description. Figure 4 (a) can be used for identification of IC functions with typical application circuit batteries. According to the use of IC testing program is different, the battery needs to have at least three to four outside the terminal.

VCC and BAT pins will even to the battery voltage, so that for, C power and the battery voltage measurement. The battery is connected a grounding resistance smaller detection resistors, let capacity check meter high impedance SRP and SRN input can monitor sensor resistance on both ends of the voltage. Through testing the current flows through a resistor can be used to judge the battery or release the amount of electricity. Designers choose detection resistance value must be considered when resistance on both ends of the voltage can't more than 100 mV, low resistance may be more hours in current errors. Circuit board layout must ensure that SRP and SRN to testing from as close as possible to the connection of the resistor sensor resistance end; In other words, they should be the Kelvin attachment.

HDQ pin need external and resistors, this resistance should be located the host or the main application, such capacity check plan to the battery and portable devices when sleep function enable connection broken. Advice and resistance choose 10 k Ω.

battery identification. A low cost WeiMao batteries are getting more and more serious, these cells may not contain OEM requirements of security protection circuit. So, genuine battery may contain figure 4 (a) shows the appraisal circuit. When to identify the battery, the host to contain IC (bq26150, the function is cyclic redundancy check (CRC)) issued the battery packs a ask value (challenge), the CRC will contain battery according to this inquiry value and, in the building of the IC in CRC polynomial calculation the CRC value. CRC is based on the host of command and IC secret in the query of the definition of the CRC polynomial completed, the host in CRC values calculated with the calculation result of well battery comparison to identify the appraisal success.

Once the battery through the appraisal, bq26150 will issue commands to ensure that the host and quantity test plan of material lines between normal communication. When the battery connection interruption or to connect, the whole the identification process will be repeated again.

double the battery application. Figure 4 (b) for use bq26500 support double the typical application of lithium ion battery circuit. In order to support more battery, and this circuit is adding a adjustable regulators. Capacity check millions of BAT pin and the bottom of a battery anode linked to complete the variable voltage measurement of the battery.

Host to be able to read capacity check plan of variable voltage measurement battery, to make sure the end of discharging threshold and charging terminate threshold. As for the remaining state power (RemainingStateofCapacity), do not need to read can use directly.

The above bq2650x and bq27x00 etc capacity check plan provides the battery manufacturer a simple to use options, this scheme L [just measuring battery voltage to be precise, so these capacity check plan can be applied to various battery framework, and can support the battery identification and double the battery application '

3.2 power detection algorithm is an example of applications another, can apply to all kinds of general voltmeter new IC.

Today's many manufacturers can provide a variety of voltmeter IC,, the user can choose the suitable function device, to optimize the product price. Use voltmeter measurement of storage battery parameters, the separate architecture allows users in the host custom power measurement algorithm within. Eliminating embedded processor battery cost. On this to Dallase semicconductor company called cases of DS2762 chip for typical analysis. A new separate voltmeter IC, its structure see chart 5 (a) below.

DS2762 application characteristics

DS2762 is a single quarter of lithium battery voltmeter and protection circuit, integrated into a tiny 2.46 mm x 2.74 mm inversion of packaging. Due to internal integration for power detection of high precise resistance, this device is very save a space. It is the small size and incomparable high level of integration, for mobile phone battery and other similar handheld products, such as PDA, etc, are all very ideal. Integrated protection circuit continuously monitoring the battery voltage, over voltage and flow fault (charging or discharge period). Different from the independent protection IC, DS2762 allow main processor surveillance/control protection FET conduction state, such, can DS2762 through the protection of the power system and the control circuit implementation. DS2762 can also charge a battery consumption has depth, when the battery voltage within three V, provide a limit of the charging current recovery path.

DS2762 accurate monitoring battery current, voltage and temperature, the dynamic range and resolution of common satisfy any mobile communication product testing standards. The measurement of current for internally generated when the integral, realize the power measurement. Through the real-time, continuous automatic disorders correct, the precision of power measurement can be increased. The built-in measuring resistance due to eliminate manufacturing process and temperature and cause resistance change, further improve the precision of the voltmeter. Important data stored in 32 bytes, can add the lock EEPROM; 16 bytes of SRAM are used to keep dynamic data. And DS2762 all communication all through the 1-Wire, more communication interface node, minimize the battery and the connection to the host. Its main features for; Single quarter of lithium battery protector; High precision current (power measurement), voltage and temperature measurement; Optional integrated 25 m Ω measuring resistance, each DS2762 after fine-tuning alone; 0 V battery restore charge; 32 bytes can lock EEPROM, 16 bytes SRAM, 64 a ROM;

1-Wire, node, digital communication interface; Support more battery power management, and through the protection system control FET power; Dormancy mode power supply current only 2 µ A (most); Work mode power supply current for 90 µ A (most); 2.46 mm x 2.74 mm inversion of packaging or 16 feet SSOP package led, and both are can choose with or without detection resistance; After has with e

2011-12-15

cent osでのphp5.3環境のセットアップ with "yum"

FuelPHP Advent Calendar 2011 の 15日目。

FuelPHP の URL とコントローラの関係から続いて寄稿します。

@eifukuです

早速ですが本題。

といって、そもそもの経緯を先に。

fuelphpを試そう!ってなもんで既存サーバPHP5.3にしよう〜という所が発端。

既にyumPHP5.2ベース環境が構築してあったせいで、色々とconflictしてインストールに手間取る。。。

案外、環境構築ってはまると手間よねーといった意味合いも込めて、

今後の参考迄に割とストレートにいける様にセットアップ手順をログます

今回はせっかくなので、色々と最新パッケを用意します。

LES RPM DE REMIのリポジトリ登録

そもそも、yum提供しているのはPHP5.2。

なので、fuelphpを動作させるために、今回は最新のRPMパッケからPHP5.3をインスコ

最新のrpmを確認してインストール

$ sudo rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-4.noarch.rpm

$ sudo rpm -Uvh http://rpms.famillecollet.com/enterprise/remi-release-5.rpm

apache2をインストール

$ sudo yum install apache2

mysql(v5.5)をインストール

既存mysqlを使う人は飛ばして次項へ。

(PHPを先にインストールすると色々こけるので先にmysqlをセットアップ)

$ sudo yum --enablerepo=remi install mysql mysql-server

で起動テスト

$ sudo /etc/init.d/mysqld start

いや、こけた。

起動せず。。

ふむ。repositoryをremi-testにしなければダメな模様。

再度インストール場合には依存関係のパッケージconflictするのでとにかく消す。

ごっそり消す!!

$ sudo yum remove -y mysql*

インストール

$ sudo yum --enablerepo=remi-test install mysql mysql-server

$ sudo /etc/init.d/mysqld start

Starting MySQL: [ OK ]

いった!

自動起動設定だけ済ませて次へ。

$ sudo /sbin/chkconfig mysqld on

php諸々をインストール

既存php5.2以前がある場合は、やはりとにかく、ごっそりremove!!

で以下に続く。

$ sudo yum --enablerepo=remi install -y php php-mysql php-xml php-mbstring php-common

以上でfulephp動作前の環境構築準備は完了!

ほんとはハマった辺りのログとかも入れた方がいいんでしょうが、今回はこれでご勘弁。

ソースから入れた方が楽だよなぁ・・・と何度か方向転換しかかりましたが・・・なんとか。

明日16日目は@madmamorさんの「FuelPHPのcoreクラスを拡張してみる。ですね!

おたのしみに!

2011-09-08

Feeling of the cat

Translated from http://anond.hatelabo.jp/20110907020451


For a long time, I am in a dark box.


According to someone's comment I heard outside of the box, a tiny bottle containing deadly poison is located in this box. Although the bottle is completely sealed, a hammer is positioned in the vicinity of the bottle. And they said the hammer would fall down at a certain time.


When is "the certain time"? I don't know. In this very moment? Or distant future? Possibly, it already has come (I don't want to think about it). No one can affect the hammer. As an independent event, it will fall down with probability 50%. The probability is exactly 50%. Possibly, the bottle may be broken, or may not. About myself, dead, or, alive.


I must say, how terrible the situation is.


It is impossible for me to avoid having a furious indignation. My life, the most important issue for me, is completely away from me, and is solely dependent on the simple figure, FIFTY PERCENT! Too much terrible.


Additionally, and I think it is completely unreasonable, I am shackled in many ways to keep the probability at exactly 50%.


Visual perception. The box is completely shielded from any light. It's for avoiding me from finding and destroying the bottle and apparatus. Complete darkness. I am in the total darkness. Thus, now I can’t see even the outline of myself. Possibly it sounds strange, the darkness makes me have a doubt about the existence of my body itself.


Acoustic perception. Maybe, from the reason I mentioned above, a perfect sound insulation is used. I can’t hear even the voice of my own. I don't know the mechanism. In the first place, as I can’t see anything, how can I investigate it? So, this is only a speculation, possibly, my drum membranes were damaged before enclosure in this box, or, some special material is used for the wall of the box.


Anyway, in a dark box too much good at shielding light and sound, my visual and acoustic perception is dead just as the term indicates.


As if further confirmation are needed, a huge fatigue weighing heavily upon me is another shackle for me. It seems that they gave me some kind of muscle relaxant to avoid me from struggling. As I can’t change from the same posture, my tactile perception is almost paralyzed.


No light. No sound. Smell and taste are unreliable. Tactile perception is in malfunction. I am like a puppet. All the five senses are out of control of mine. Too much cruel. Perfect shackles. I wish if they had given a sleeping medicine. I feel I am in agony without any external injury. My life, my existence itself, is completely ignored. Such a humiliation keeps my sanity. Only such a humiliation can.


The right to control the life and death of myself is completely deprived. I hate such situation. The core determinant of the continuity of my life is completely dependent upon, solely upon, a pure probability. Completely away from anyone's will. I hate it, again, I hate it!


Why do I have to be enclosed in such a box? In such a ridiculous box, why do I have to be in fear of life and death with such perfect shackles?


Unreasonable. Cruel.


I am lonely. Am I feeling empty and flat? Difficult to avoid sobbing? No. My loneliness is much deeper. I am in a sea of void. I am alone. Completely alone. As an orphan, I was thrown into this endless darkness. I am quivering in the absolute zero.


There is no perspective in this box. Only the darkness is here. I can’t feel the bottle and the hammer. I can’t feel the wall, the bottom, and the ceiling neither. They should be there. But all the five senses of mine are deprived. I feel like there is nothing. While those things have some meanings.


Speaking honestly, I am not so sure I am in a box. I am sure that what I am exists. I am thinking. I am fantasizing. It is the evidence showing the uniqueness of mine, which is called the ego or the consciousness or the mind, is solid. But, is the uniqueness is truly enclosed in the box? Is it possible that it is floating in another space? I can’t eliminate such doubts.


Possibly, what I am here is floating in the end of the universe, or is lying down at the bottom of the Mariana Trench. Or going down from a vent of the Kilauea volcano, maybe.


I don't have any method to know how the box (enclosing me) is. All the senses of mine are dead. It is impossible for me to determine whether here is inside of a box or not.


In addition to that, I am not so sure that I am truly alive. I don't have any way to confirm such a simple thing. Possibly, the 50% probability has already passed beyond me. Maybe I am already dead. I am still alive, maybe. Injected with muscle relaxant, shallow breathes, weak heartbeats. Or, cessation of all of them, simply leaving meat bolus.


I am deprived of any capability of controlling my own body. Who can say that my mind resides in the body continuing vital activities? The five senses have been poisoned with the total darkness. They can’t function as sensory organs. I don't have any chance to know the truth. Possibly, any supposition is fabricated by myself. The situation surrounding me and the uniqueness of myself are components of programmed role-play, possibly.


About the existence of mine, I can’t determine the behavior. I hate to admit it, but I am in the middle of fluctuation.


I wish someone could find me. I wish someone could open the box and observe how I am, and determine what I am. There is not enough power inside me to do so. All I can do is to continue to quiver in the loneliness.


If I were the Almighty, I could say "Let there be light". I know it is impossible. But I can‘t help feeling how nice it would be if I could say so.


My own free will! It could fix every fluctuation surrounding myself!


At the same time, longing produces shadow. If the box is opened, I will be found and observed. As a result, what I am will be determined. To tell the truth, I can’t look away from the fact I am anxious about being determined.


Although I am unable to determine whether I am alive or dead by myself, I am afraid of the death. I am afraid that I am determined as a dead. I can’t accept. Still I can’t feel, I can’t imagine the death as a specific phenomenon. Probably, that is why I am afraid of death.


No, it should not be restricted to me. King of virtue. Deadly murderer. Regular folks. All the same. Maybe, the elder people or patients of bad disease could have some imagination sufficiently close to the true death. But, even so, it is impossible to know the specific experience of death.


In the end, death is the final destination with overwhelming significance. The time and the consciousness have an absolute irreversibility. Death also has the absoluteness which can’t be changed. Even if it is a ritual pass point or an outstanding impressive event.


Myself, the mind of mine here is, will be vanished at the moment at which how I am is determined. If they deprive the lukewarm water, in which I can’t feel the temperature, it is impossible for me to avoid exposing myself to the air.


I am afraid of such an irreversible change. It is not limited to the determination of death. Also I am so anxious that I am determined being alive.


The current existence of myself is like a tiny, tiny illusion standing on an endless point. Not larger than that. Not smaller than that. Not longer than that. Not shorter than that. No expansion. No shrinkage. Standing upon a unique single point. It is mathematically correct. I am something like a ghost staying upon such a point, having confusion about identity of myself.


The point exists at every position on a plane of coordinates, at the same time, not existing at a certain position. If a certain event occurs, on that moment, it will converge me to a single point among all the space-times, in which the event has occurred, as if having me step off a bus. Without any concern. Even if the point and I have been a one. The illusion, which has stayed in such a point, has possibilities of being real and being vanished like a mist, to an equal degree.


Now, I am existing in every time-space, I have every nature. At the same time, I am suffering from the loneliness that I am away from every nature. I wish someone can find me. At the same time, I am so anxious that where I will be, and that how I will be at that moment.


I have been released from the law of cause and effect. I am undetermined ever, for ever.

2011-07-13

Rubyの実行(.exe)ファイルの作り方の詳細

Rubyではじめるゲームプログラミング

P.340

1/ ・パスに2バイト文字が入らない

   ・パスにスペースの入らない(たとえば、My Documentsなどは、途中にスペースが入っているのでエラーになる。アンダーバー「_」は可。)

    フォルダ(C\Testなど)を作る。 →以下フォルダAとする。

2/ 実行ファイルを作りたいスクリプト(○○.rb)ファイル自体も、2バイト文字、半角でもスペースの入らないファイル名にする。

 →「5-05-04 ride block.rb」といったファイル名は、スペースが入っているのでダメ

3/ フォルダAに、ActiveScriptRubyインストールするとできる「ruby consoleショートカット(everything検索)のショートカットを、そのフォルダコピーする。

4/ フォルダAに、実行ファイルを作りたいスクリプト(○○.rb)を、Imgフォルダ等と共にコピーする。

5/ フォルダAに、fontを、fontsフォルダごとコピーする。

6/ フォルダAに、Ruby/SDLDLLをそのフォルダコピーする。15種類。

 →DLLフォルダを、ではなく、exeファイルの置かれる場所に、DLLファイルそのものを直接並べる。

7/ この時点でスクリプトテスト

フォルダAにコピーしたruby consoleを起動 →コマンドプロンプトの後に、「ruby ○○.rb」とし、スクリプトの起動を確認する。

8/ フォルダAにコピーしたruby consoleを起動 →コマンドプロンプトの後に、「mkexy ○○.rb」とする。

 →ゲームが起動するので、終了させる。

→○○.exy という、レシピファイル作成される。

9/ ○○.exy ファイルを、メモ帳等のテキストエディタで開く

10/ 初期値は「core: cui」となっているのを、「core: gui」に変える。

 →変えなくてもいいが、その場合、実行時にコマンドプロンプト窓が出てきて邪魔になる。

11/ フォルダAにコピーしたruby consoleを起動 →コマンドプロンプトの後に、「exerb ○○.exy」←今作ったファイル とする。

→「○○.exe」という実行ファイルができる。

12/ 「○○.exe」をダブルクリックして実行、起動しなかった場合、2~5のプロセスに、コピーし忘れがある。

13/ 配布物は以下の通り。

・実行ファイル「○○.exe」 →ファイル名は任意に変更可。(もちろん.exe以外の名前)

・fontsフォルダ

・images、soundなどのリソースフォルダ

Ruby/SDLDLL全て。厳密にはoggなどを使用しなければ、それ用のDLL不要

2011-06-21

フクシマチェルノブイリ越え」と言ってるトンデモさんにとどめの一撃

国産情報は何でも隠蔽というが、海外報道なら信じる、しか英語は読めない君らに捧げる。

政府福島第一原発事故直後の3月上旬から下旬にかけ、放射線放出が1986年のチェルノブイリ原発事故を上回ることを想定し、日本から到着した旅客への検査などを計画していたことが分かった。計画は結局、実施はされなかった。英紙ガーディアン電子版が21日報じた。

http://www.asahi.com/special/10005/TKY201106210142.html

元記事はこちらな。

あと同じ記事から面白そうな箇所を。ちなみに逐語訳ではなく語順(つまり論理の流れ)をできるだけ保つように訳した。受験英語みたいな杓子定規適用して「誤訳」と言わないように。実際、受験英語流に訳しても意味は変わらないよ。

Even in this worst case scenario though, the accident was expected to cause less harm than Chernobyl, where the reactor's burning graphite core threw radioactive material high into the atmosphere, and local populations were not evacuated quickly or barred from consuming contaminated milk and other products.

訳:ただしこのような(訳注チェルノブイリより大量の放射能放出がある)最悪の場合でも、被害はチェルノブイリより下になると予測された。チェルノブイリでは燃え上がる黒鉛放射性物質大気中に放出した上、付近住民の非難も牛乳その他の汚染物質規制も行われなかったかである

2011-05-29

http://anond.hatelabo.jp/20110529224408

もしドラが騒がれたのはたぶん、難解なドラッカーの理解の助けになる本だからだと思う

表紙を可愛い女の子にして、文体はラノベ

そうして「漫画文化になれた人間アプローチ」って事なんだろう。

一時期、携帯小説流行って、本を読まない人が「感動した」「リアル」って評価したのと一緒で、

そうしたものに接したことが無い層にアピールしてる。

入門書でもなくて、漫画チックな嘘を混ぜた紹介書ってところか。


キャプテン翼に憧れて、世界的なプロサッカー選手が生まれるんだから、あながち馬鹿したものでもない。

ただまぁ、「キャプテン翼」の効能と、「サッカー入門」の効能と、(無いと知ったうえであえて)サッカーの全てが網羅された「Coreサッカー」の効能は違うものだ。

目的も、内容も、信頼度も違う。

したことない内容を、やたら小難しく書いたテキストを好んで読むのはなんでだろう。

から元増田のこれは、てんで的外れ

2011-05-07

モテる機電系高専女子力を磨くための4つの心得「Airを知らない女を

こんにちは、専攻科でJABEE取得を目指してるSPARCです。私は学位も知名度もありませんしモジョですが、恋愛に関してはプロフェッショナル。今回は、モテる女子力を磨くための4つの心得を皆さんにお教えしたいと思います。

 

1. あえて2~3世代前のポケコン講義に持っていく

あえて2~3世代前のポケコンを使うようにしましょう。そして場で好みの男がいたら話しかけ、わざとらしくポケコンを出していじってみましょう。そして「あ~ん! このポケコン本当にマジでチョームカつくんですけどぉぉお~!」と言って、男に「どうしたの?」と言わせましょう。言わせたらもう大成功。「関数電卓とか詳しくなくてぇ~! ずっとコレ使ってるんですけどぉ~! 使いにくいんですぅ~! ぷんぷくり~ん(怒)」と言いましょう。だいたいの男は新しいマイコンを持ちたがる習性があるので、古かったとしても1世代前のPDAを使っているはずです

そこで男が「新しいマイコンにしないの?」と言ってくるはず(言ってこない空気が読めない男はその時点でガン無視OK)。そう言われたらあなたは「なんかなんかぁ~! 最近Newton PDAが人気なんでしょー!? あれってどうなんですかぁ? 新しいの欲しいですけどわかんなぁぁああい!! 私かわいそーなコ★」と返します。すると男は「HP 200LXでしょ? Appleからは出ないよ。本当に良くわからないみたいだね。どんなのが欲しいの?」という話になって、次の休みの日にふたりでマイコン選びのデートに行けるというわけですあなた女子力が高ければ、男がZaurus買ってくれるかも!?

 

2. 実習用端末でSKKを使うとモテる

「Kya-!」とか「KanaSii」などと入力する「SKK」を端末に入れると、男性ATOKユーザーは「なんかこの子マメやなぁ」や「自動で複文節変換してあげたいかも」と思ってくれます計算機上では現実世界よりも言葉音節・文節のイメージが相手に伝わらないので、音節ごとにハッキリ物申すことによって、男性あなたをしっかり物の女の子勘違いしてくれるのです。そういうキャラクターにするとほぼ絶対に同性にも嫌われますが気にしないようにしましょう。

 

3. とりあえず男には「えー! なにそれ!?  知りたい知りたーい♪」と言っておく

飲み会などで男が女性に話すことといえば美少女ゲーやパチンコの話ばかり。よって、女性にとってどうでもいい話ばかりです。でもそこで適当に「へぇーそうなんですかぁ~?」とか「よくわかんないですけどすごいんですねぇ」と返してしまうと、さすがの男も「この女ダメだな」と気がついてしまいます。ダメ女だとバレたら終わりです。そこは無意味テンションをあげて、「えー! なにそれ!?  知りたい知りたーい♪」と言っておくのが正解。たとえ興味がない話題でも、テンションと積極性でその場を乗り切りましょう。積極的に話を聞いてくれる女性に男は弱いのです

いろいろと話を聞いたあと、「おまえはオレで、オレがおまえなんですね! わかります! アッー!」とコメントすればパーフェクト。続けて頭に指をさしてくるくる回しつつ「みすずちんハァハァみすずちんハァハァ…」※と言って、「もう…ゴールしてもいいかな?」※と男に言わせるのもアリ。そこで「私のバブルメモリ記録しているのでありますっ☆」と言えば女子力アップ! そこでまた男は「この子おもしろくてカワイイかも!?」と思ってくれます。私は学位単位もありませんしモジョですが、こういうテクニックを使えば免疫がない私のようなバカ女のほうがモテたりするのです。男は優越感に浸りたいですからね。

 

4. 教官室ではMacが好きな女をアピールせよ

教官室に入ったら、真っ先に計算機マウスを確認して、「あーん! 私Macじゃないと使えないんですよね~(悲)」と言いましょう。するとほぼ100パーセント「どうして? これ(DEC Alpha)もUN*Xだよ?」と聞かれるので、「マウスボタンが3つも有ったら迷っちゃうんです><」と返答しましょう。ここでまた100パーセント「でもコンソールで使ってたら関係ないよ?」と聞かれるので、うつむいて3~5秒ほど間をおいてからボソッとこう言います。「……だって、……だって漢字Talkからマウスで使うじゃないですかぁっ! Welcome to Macintoshですぅ! まだ爆弾も出てないのにぃぃ~(悲)。coreすら吐けないんですよ……」と身を震わせて言うのです

その瞬間、あなた女子力がアップします。きっと男は「なんて優しい天使のようなコなんだろう! 絶対にLisaプレゼントゲットしてやるぞ! コイツは俺の女だ!」と心のなかで誓い、あなたに惚れ込むはずです。意中の男と付き合うことになったら、そんなことは忘れて好きなだけAdobe製品を買って大丈夫です。「漢字Talkなんじゃなかったっけ?」と言われたら「大丈夫になった」とか「慣れた」、「そんなこと言ってない」と言っておけばOKです

(文=JABEE認定コース対象・SPARC嬢)

※一部訂正しました年齢に関するツッコミが多いですが、ドリームモーニング娘。メンバー年齢の平均&分散ぐらいの範囲です

2011-03-14

福島原子力発電所CNNコメント欄 MIT科学者見解2【東日本巨大地震

When the diesel generators were gone, the reactor operators switched to emergency battery power. The batteries were designed as one of the backups to the backups, to provide power for cooling the core for 8 hours. And they did.

Within the 8 hours, another power source had to be found and connected to the power plant. The power grid was down due to the earthquake. The diesel generators were destroyed by the tsunami. So mobile diesel generators were trucked in.

This is where things started to go seriously wrong. The external power generators could not be connected to the power plant (the plugs did not fit). So after the batteries ran out, the residual heat could not be carried away any more.

At this point the plant operators begin to follow emergency procedures that are in place for a “loss of cooling event”. It is again a step along the “Depth of Defense” lines. The power to the cooling systems should never have failed completely, but it did, so they “retreat” to the next line of defense. All of this, however shocking it seems to us, is part of the day-to-day training you go through as an operator, right through to managing a core meltdown.

It was at this stage that people started to talk about core meltdown. Because at the end of the day, if cooling cannot be restored, the core will eventually melt (after hours or days), and the last line of defense, the core catcher and third containment, would come into play.

But the goal at this stage was to manage the core while it was heating up, and ensure that the first containment (the Zircaloy tubes that contains the nuclear fuel), as well as the second containment (our pressure cooker) remain intact and operational for as long as possible, to give the engineers time to fix the cooling systems.

Because cooling the core is such a big deal, the reactor has a number of cooling systems, each in multiple versions (the reactor water cleanup system, the decay heat removal, the reactor core isolating cooling, the standby liquid cooling system, and the emergency core cooling system). Which one failed when or did not fail is not clear at this point in time.

So imagine our pressure cooker on the stove, heat on low, but on. The operators use whatever cooling system capacity they have to get rid of as much heat as possible, but the pressure starts building up. The priority now is to maintain integrity of the first containment (keep temperature of the fuel rods below 2200°C), as well as the second containment, the pressure cooker. In order to maintain integrity of the pressure cooker (the second containment), the pressure has to be released from time to time. Because the ability to do that in an emergency is so important, the reactor has 11 pressure release valves. The operators now started venting steam from time to time to control the pressure. The temperature at this stage was about 550°C.

This is when the reports about “radiation leakage” starting coming in. I believe I explained above why venting the steam is theoretically the same as releasing radiation into the environment, but why it was and is not dangerous. The radioactive nitrogen as well as the noble gases do not pose a threat to human health.

At some stage during this venting, the explosion occurred. The explosion took place outside of the third containment (our “last line of defense”), and the reactor building. Remember that the reactor building has no function in keeping the radioactivity contained. It is not entirely clear yet what has happened, but this is the likely scenario: The operators decided to vent the steam from the pressure vessel not directly into the environment, but into the space between the third containment and the reactor building (to give the radioactivity in the steam more time to subside). The problem is that at the high temperatures that the core had reached at this stage, water molecules can “disassociate” into oxygen and hydrogen – an explosive mixture. And it did explode, outside the third containment, damaging the reactor building around. It was that sort of explosion, but inside the pressure vessel (because it was badly designed and not managed properly by the operators) that lead to the explosion of Chernobyl. This was never a risk at Fukushima. The problem of hydrogen-oxygen formation is one of the biggies when you design a power plant (if you are not Soviet, that is), so the reactor is build and operated in a way it cannot happen inside the containment. It happened outside, which was not intended but a possible scenario and OK, because it did not pose a risk for the containment.

So the pressure was under control, as steam was vented. Now, if you keep boiling your pot, the problem is that the water level will keep falling and falling. The core is covered by several meters of water in order to allow for some time to pass (hours, days) before it gets exposed. Once the rods start to be exposed at the top, the exposed parts will reach the critical temperature of 2200 °C after about 45 minutes. This is when the first containment, the Zircaloy tube, would fail.

And this started to happen. The cooling could not be restored before there was some (very limited, but still) damage to the casing of some of the fuel. The nuclear material itself was still intact, but the surrounding Zircaloy shell had started melting. What happened now is that some of the byproducts of the uranium decay – radioactive Cesium and Iodine – started to mix with the steam. The big problem, uranium, was still under control, because the uranium oxide rods were good until 3000 °C. It is confirmed that a very small amount of Cesium and Iodine was measured in the steam that was released into the atmosphere.

It seems this was the “go signal” for a major plan B. The small amounts of Cesium that were measured told the operators that the first containment on one of the rods somewhere was about to give. The Plan A had been to restore one of the regular cooling systems to the core. Why that failed is unclear. One plausible explanation is that the tsunami also took away / polluted all the clean water needed for the regular cooling systems.

The water used in the cooling system is very clean, demineralized (like distilled) water. The reason to use pure water is the above mentioned activation by the neutrons from the Uranium: Pure water does not get activated much, so stays practically radioactive-free. Dirt or salt in the water will absorb the neutrons quicker, becoming more radioactive. This has no effect whatsoever on the core – it does not care what it is cooled by. But it makes life more difficult for the operators and mechanics when they have to deal with activated (i.e. slightly radioactive) water.

But Plan A had failed – cooling systems down or additional clean water unavailable – so Plan B came into effect. This is what it looks like happened:

In order to prevent a core meltdown, the operators started to use sea water to cool the core. I am not quite sure if they flooded our pressure cooker with it (the second containment), or if they flooded the third containment, immersing the pressure cooker. But that is not relevant for us.

The point is that the nuclear fuel has now been cooled down. Because the chain reaction has been stopped a long time ago, there is only very little residual heat being produced now. The large amount of cooling water that has been used is sufficient to take up that heat. Because it is a lot of water, the core does not produce sufficient heat any more to produce any significant pressure. Also, boric acid has been added to the seawater. Boric acid is “liquid control rod”. Whatever decay is still going on, the Boron will capture the neutrons and further speed up the cooling down of the core.

The plant came close to a core meltdown. Here is the worst-case scenario that was avoided: If the seawater could not have been used for treatment, the operators would have continued to vent the water steam to avoid pressure buildup. The third containment would then have been completely sealed to allow the core meltdown to happen without releasing radioactive material. After the meltdown, there would have been a waiting period for the intermediate radioactive materials to decay inside the reactor, and all radioactive particles to settle on a surface inside the containment. The cooling system would have been restored eventually, and the molten core cooled to a manageable temperature. The containment would have been cleaned up on the inside. Then a messy job of removing the molten core from the containment would have begun, packing the (now solid again) fuel bit by bit into transportation containers to be shipped to processing plants. Depending on the damage, the block of the plant would then either be repaired or dismantled.

Now, where does that leave us?

・The plant is safe now and will stay safe.

Japan is looking at an INES Level 4 Accident: Nuclear accident with local consequences. That is bad for the company that owns the plant, but not for anyone else.

・Some radiation was released when the pressure vessel was vented. All radioactive isotopes from the activated steam have gone (decayed). A very small amount of Cesium was released, as well as Iodine. If you were sitting on top of the plants’ chimney when they were venting, you should probably give up smoking to return to your former life expectancy. The Cesium and Iodine isotopes were carried out to the sea and will never be seen again.

・There was some limited damage to the first containment. That means that some amounts of radioactive Cesium and Iodine will also be released into the cooling water, but no Uranium or other nasty stuff (the Uranium oxide does not “dissolve” in the water). There are facilities for treating the cooling water inside the third containment. The radioactive Cesium and Iodine will be removed there and eventually stored as radioactive waste in terminal storage.

・The seawater used as cooling water will be activated to some degree. Because the control rods are fully inserted, the Uranium chain reaction is not happening. That means the “main” nuclear reaction is not happening, thus not contributing to the activation. The intermediate radioactive materials (Cesium and Iodine) are also almost gone at this stage, because the Uranium decay was stopped a long time ago. This further reduces the activation. The bottom line is that there will be some low level of activation of the seawater, which will also be removed by the treatment facilities.

・The seawater will then be replaced over time with the “normal” cooling water

・The reactor core will then be dismantled and transported to a processing facility, just like during a regular fuel change.

Fuel rods and the entire plant will be checked for potential damage. This will take about 4-5 years.

・The safety systems on all Japanese plants will be upgraded to withstand a 9.0 earthquake and tsunami (or worse)

・I believe the most significant problem will be a prolonged power shortage. About half of Japan’s nuclear reactors will probably have to be inspected, reducing the nation’s power generating capacity by 15%. This will probably be covered by running gas power plants that are usually only used for peak loads to cover some of the base load as well. That will increase your electricity bill, as well as lead to potential power shortages during peak demand, in Japan.

If you want to stay informed, please forget the usual media outlets and consult the following websites:

http://www.world-nuclear-news.org/RS_Battle_to_stabilise_earthquake_reactors_1203111.html

http://bravenewclimate.com/2011/03/12/japan-nuclear-earthquake/

http://ansnuclearcafe.org/2011/03/11/media-updates-on-nuclear-power-stations-in-japan/

福島原子力発電所CNNコメント欄 MIT科学者科学者見解1【東日本巨大地震

結論:大丈夫

MvK2010

I'm going to copy paste a full blog post of a research scientist at MIT here, who explains the situation at Fukushima much better than anyone else has, his message: no worries.

This post is by Dr Josef Oehmen, a research scientist at MIT, in Boston.

He is a PhD Scientist, whose father has extensive experience in Germany’s nuclear industry. I asked him to write this information to my family in Australia, who were being made sick with worry by the media reports coming from Japan. I am republishing it with his permission.

It is a few hours old, so if any information is out of date, blame me for the delay in getting it published.

This is his text in full and unedited. It is very long, so get comfy.

I am writing this text (Mar 12) to give you some peace of mind regarding some of the troubles in Japan, that is the safety of Japan’s nuclear reactors. Up front, the situation is serious, but under control. And this text is long! But you will know more about nuclear power plants after reading it than all journalists on this planet put together.

There was and will *not* be any significant release of radioactivity.

By “significant” I mean a level of radiation of more than what you would receive on – say – a long distance flight, or drinking a glass of beer that comes from certain areas with high levels of natural background radiation.

I have been reading every news release on the incident since the earthquake. There has not been one single (!) report that was accurate and free of errors (and part of that problem is also a weakness in the Japanese crisis communication). By “not free of errors” I do not refer to tendentious anti-nuclear journalism – that is quite normal these days. By “not free of errors” I mean blatant errors regarding physics and natural law, as well as gross misinterpretation of facts, due to an obvious lack of fundamental and basic understanding of the way nuclear reactors are build and operated. I have read a 3 page report on CNN where every single paragraph contained an error.

We will have to cover some fundamentals, before we get into what is going on.

Construction of the Fukushima nuclear power plants

The plants at Fukushima are so called Boiling Water Reactors, or BWR for short. Boiling Water Reactors are similar to a pressure cooker. The nuclear fuel heats water, the water boils and creates steam, the steam then drives turbines that create the electricity, and the steam is then cooled and condensed back to water, and the water send back to be heated by the nuclear fuel. The pressure cooker operates at about 250 °C.

The nuclear fuel is uranium oxide. Uranium oxide is a ceramic with a very high melting point of about 3000 °C. The fuel is manufactured in pellets (think little cylinders the size of Lego bricks). Those pieces are then put into a long tube made of Zircaloy with a melting point of 2200 °C, and sealed tight. The assembly is called a fuel rod. These fuel rods are then put together to form larger packages, and a number of these packages are then put into the reactor. All these packages together are referred to as “the core”.

The Zircaloy casing is the first containment. It separates the radioactive fuel from the rest of the world.

The core is then placed in the “pressure vessels”. That is the pressure cooker we talked about before. The pressure vessels is the second containment. This is one sturdy piece of a pot, designed to safely contain the core for temperatures several hundred °C. That covers the scenarios where cooling can be restored at some point.

The entire “hardware” of the nuclear reactor – the pressure vessel and all pipes, pumps, coolant (water) reserves, are then encased in the third containment. The third containment is a hermetically (air tight) sealed, very thick bubble of the strongest steel. The third containment is designed, built and tested for one single purpose: To contain, indefinitely, a complete core meltdown. For that purpose, a large and thick concrete basin is cast under the pressure vessel (the second containment), which is filled with graphite, all inside the third containment. This is the so-called “core catcher”. If the core melts and the pressure vessel bursts (and eventually melts), it will catch the molten fuel and everything else. It is built in such a way that the nuclear fuel will be spread out, so it can cool down.

This third containment is then surrounded by the reactor building. The reactor building is an outer shell that is supposed to keep the weather out, but nothing in. (this is the part that was damaged in the explosion, but more to that later).

Fundamentals of nuclear reactions

The uranium fuel generates heat by nuclear fission. Big uranium atoms are split into smaller atoms. That generates heat plus neutrons (one of the particles that forms an atom). When the neutron hits another uranium atom, that splits, generating more neutrons and so on. That is called the nuclear chain reaction.

Now, just packing a lot of fuel rods next to each other would quickly lead to overheating and after about 45 minutes to a melting of the fuel rods. It is worth mentioning at this point that the nuclear fuel in a reactor can *never* cause a nuclear explosion the type of a nuclear bomb. Building a nuclear bomb is actually quite difficult (ask Iran). In Chernobyl, the explosion was caused by excessive pressure buildup, hydrogen explosion and rupture of all containments, propelling molten core material into the environment (a “dirty bomb”). Why that did not and will not happen in Japan, further below.

In order to control the nuclear chain reaction, the reactor operators use so-called “moderator rods”. The moderator rods absorb the neutrons and kill the chain reaction instantaneously. A nuclear reactor is built in such a way, that when operating normally, you take out all the moderator rods. The coolant water then takes away the heat (and converts it into steam and electricity) at the same rate as the core produces it. And you have a lot of leeway around the standard operating point of 250°C.

The challenge is that after inserting the rods and stopping the chain reaction, the core still keeps producing heat. The uranium “stopped” the chain reaction. But a number of intermediate radioactive elements are created by the uranium during its fission process, most notably Cesium and Iodine isotopes, i.e. radioactive versions of these elements that will eventually split up into smaller atoms and not be radioactive anymore. Those elements keep decaying and producing heat. Because they are not regenerated any longer from the uranium (the uranium stopped decaying after the moderator rods were put in), they get less and less, and so the core cools down over a matter of days, until those intermediate radioactive elements are used up.

This residual heat is causing the headaches right now.

So the first “type” of radioactive material is the uranium in the fuel rods, plus the intermediate radioactive elements that the uranium splits into, also inside the fuel rod (Cesium and Iodine).

There is a second type of radioactive material created, outside the fuel rods. The big main difference up front: Those radioactive materials have a very short half-life, that means that they decay very fast and split into non-radioactive materials. By fast I mean seconds. So if these radioactive materials are released into the environment, yes, radioactivity was released, but no, it is not dangerous, at all. Why? By the time you spelled “R-A-D-I-O-N-U-C-L-I-D-E”, they will be harmless, because they will have split up into non radioactive elements. Those radioactive elements are N-16, the radioactive isotope (or version) of nitrogen (air). The others are noble gases such as Xenon. But where do they come from? When the uranium splits, it generates a neutron (see above). Most of these neutrons will hit other uranium atoms and keep the nuclear chain reaction going. But some will leave the fuel rod and hit the water molecules, or the air that is in the water. Then, a non-radioactive element can “capture” the neutron. It becomes radioactive. As described above, it will quickly (seconds) get rid again of the neutron to return to its former beautiful self.

This second “type” of radiation is very important when we talk about the radioactivity being released into the environment later on.

What happened at Fukushima

I will try to summarize the main facts. The earthquake that hit Japan was 7 times more powerful than the worst earthquake the nuclear power plant was built for (the Richter scale works logarithmically; the difference between the 8.2 that the plants were built for and the 8.9 that happened is 7 times, not 0.7). So the first hooray for Japanese engineering, everything held up.

When the earthquake hit with 8.9, the nuclear reactors all went into automatic shutdown. Within seconds after the earthquake started, the moderator rods had been inserted into the core and nuclear chain reaction of the uranium stopped. Now, the cooling system has to carry away the residual heat. The residual heat load is about 3% of the heat load under normal operating conditions.

The earthquake destroyed the external power supply of the nuclear reactor. That is one of the most serious accidents for a nuclear power plant, and accordingly, a “plant black out” receives a lot of attention when designing backup systems. The power is needed to keep the coolant pumps working. Since the power plant had been shut down, it cannot produce any electricity by itself any more.

Things were going well for an hour. One set of multiple sets of emergency Diesel power generators kicked in and provided the electricity that was needed. Then the Tsunami came, much bigger than people had expected when building the power plant (see above, factor 7). The tsunami took out all multiple sets of backup Diesel generators.

When designing a nuclear power plant, engineers follow a philosophy called “Defense of Depth”. That means that you first build everything to withstand the worst catastrophe you can imagine, and then design the plant in such a way that it can still handle one system failure (that you thought could never happen) after the other. A tsunami taking out all backup power in one swift strike is such a scenario. The last line of defense is putting everything into the third containment (see above), that will keep everything, whatever the mess, moderator rods in our out, core molten or not, inside the reactor.

http://anond.hatelabo.jp/20110314030613

へ続く

2010-06-04

同人サイト向けレンタルサーバ個人的まとめ

2chレン鯖板スレッドhttp://f43.aaa.livedoor.jp/~sils/参照、レン鯖板の各スレより拾った。

ぐぐって見つけたコチラも参照した。http://arekore.hp2.jp/pay/

あくまでCMSツールを使用して一から同人サイトを作りたい+サポートメールコントロールパネルアクセス解析は無くていい人向けです。

順次[試用しての感想]追加予定。特に記載が無いものは使える/出来る項目。

■条件(上から下へかけて優先順位が下がる)
■以下備考

有料

残念ながらさくらインターネット総合的に見ていいのかもしれない。

サイト毎にDBを分けたいとかセーフモードやら、同人という壁は大きい。

Just-Size.Network

同人公式OK(同人アダルト可)

phpMyadmin自分インストールする。鯖によってphpMySQLバージョンが違うので面倒。

DBは重いらしい。DB鯖容量は50MB。

[同人アダルト可鯖はMySQL5に対応していない]

cgi-binフォルダ必要無し。

容量無制限、サブドメイン・独自ドメイン

ステッププロ

同人公式OK(アダルト可)

mod_rewrite使えない。

セーフモードなのでWP自動アップデートが出来ない。DBが十つ付いている。

DBは重いらしい。[プロはそこそこだと思う]

データ損失をやらかした。

容量5GB、サブドメイン・独自ドメイン

さくらスタンダード

同人黙認(同人アダルト黙認)落ちない。

cgi-binフォルダ必要無し。

WP設定が楽。DB鯖は当たり外れ有。[個人的には重いと感じる]

容量10GB、サブドメイン・独自ドメイン

ロリポ

同人公式OK(同人アダルト不可)

DBの重さに定評あり。WP設定が楽。女向。

上位にチカッパ等あるがこちらは規約同人が触れられていない。

容量8~10GB、サブドメイン・独自ドメイン

aiso.net

同人公式OK(同人アダルト可)

試用無し。MySQL使用可はプレミアムから。

MySQLは3、PHPは4。

1~2MB、サブドメイン・独自ドメイン

PANDORA.nu(サブドメイン/ホスティング

同人公式OK(同人アダルト可)

バックアップ機能有(大概の鯖は規約で、サーバ側でデータ消失しても責任は負わないと記述

600~1200MB、サブドメイン・独自ドメイン

西院ネットワーク

同人公式OK(同人アダルト可)

試用無し。MySQL使用不可

容量100MB

SPUR-NET

同人公式OK(同人アダルト可)

PHPMySQLバージョン対応が遅い。

独自ドメイン不可

容量200MB~

80code.com

海外

同人でも何でも法に違反しなければOK

永らく募集が止まったりする

DB無制限

試用無し(ただし14日間までならクーリングオフで、手数料15%引きで返金有)

容量無制限(共有だと1GB)、サブドメイン・独自ドメイン

アスリ

同人公式OK(同人アダルト可)

レスポンスが遅い(入金確認等)

試用無し。

500/1000MB~、サブドメイン・独自ドメイン

CHOCOT.NET

女性専用

同人公式OK(同人アダルト可)

PHPバージョン対応が遅い。

容量50~100MB、独自ドメイン

ポケットサーバープレミアム

同人公式OK(同人アダルト可)

容量1200MB~、サブドメイン・独自ドメイン

coreserver(mini/core-A)

アダルト小説可(ただしイラストは不可)

xreaの上位サービス

落ちると復帰が長く、サポート以前に障害対応が駄目らしい。

メール規制や使えなくなる頻度が他の鯖より高い。

DBが十つ/無制限付いている。

DB鯖は当たり外れ有、だがさくらと違い鯖間移動が簡単に出来る。

miniの方が共有相手に業者が少ない為軽いらしい。

[MINIサクサク動く]

容量6GB/15GB、サブドメイン・独自ドメイン

無料

無料でも出来る所は多々あるので触れないが、今まで使ってきた鯖感想

サポートに関してはmeganebu以外初心者お断り傾向。

最低限ファイルアップロードや設置が出来るレベルでないと厳しい。

xrea.com(中上級者向)

サポートはほぼ機能していないので自分で調べて自分で全部設定する。

ただし出来る事が多いので、中上級者向けには最適。

コントロールパネルファイルアップローダアクセス解析付き。

見てる限りでは落ちたのを見たことがない。

同人大丈夫だがアダルトは禁止。

セーフモードなのでWP自動アップデートが出来ない。

meganebu.com(初中級者向)

めがねを愛する鯖管管理するサーバ。たまに落ちる。

フォーラムには初心者が溢れて和やかなのでデビューにはいいかもしれない。

鯖管に特徴があるので人を選ぶかも。

UUHP.com

最低限のことしか書かれていない。いつまでも広告

ミラーとして使える。登録が面倒。MySQLは使えません。

redribbon.to

同人アダルトOKだが、いかんせん広告が多すぎたり。

vane.jp

MySQLが使えないが、人数が少ないので快適。同人アダルトOK。

審査制。

usamimi.info(中上級者向)

規約同人に寛容だが、初心者お断り。審査制だが相当でないと落ちることは無い。

コントロールパネルアップローダ等は一切無いがxreaのように必要なものは揃っている。

たまに落ちる。個人的にここのDB鯖はさくらより軽快だと思う。

同人アダルト可。

セーフモードなのでなのでWP自動アップデートが出来ない。

※1+Kashというutf-8記述されたウェブ拍手が使える。機能はpatipatiと同等。

WPとの兼ね合いエンコードの問題で、WEB拍手やpatipatiは文字化け起こす為。

2010-05-26

「luvwave.exeを終了します」のバグや修正パッチや強制終了やエラーなど

バグがあっても名作なエロゲ!」

川上とも子が声をあてている貴重なエロゲ作品!」

などでおなじみ「luv wave」を楽しむためのアドバイス

バグは、cswareシーズウェアオフィシャルサイトで配布されている

修正パッチダウンロードして、その中身のテキスト通りにすれば、おおむね解決するはず。

http://csware.himeya.com/(修正パッチ配布ページ)

ただし、今回はじめてプレイする人、

2010年現在なら、たとえば中古ダウンロード購入、

友人から借りるなどで入手した人は、セーブデータ周りに注意が必要。

修正パッチ適用後は、新規セーブが不可となり、新規セーブを選択すると

容赦なく強制終了エラーが発生します。以下のアドバイスを実践してみてください。

2ちゃんねる luv waveスレ より

http://kagura.s18.coreserver.jp/idol/hgame2/html/1096343986.html

以前のセーブファイルがある人はこれでいいんだが、一からプレイする場合

修正パッチを上書きする前に最初セーブポイントまでプレイして、

#0~#15までセーブファイルをつくってから修正パッチをあてる。

ちなみに家ではXPSP2でも動いてます。

これを解説すると、修正パッチ適用後は、上書きセーブができなくなり、

新規セーブしようとすると強制終了してしまうということ。

だからセーブ領域確保のため、

あらかじめ上書き用のセーブデータを15個作ったほうがよい、という話。

すでにゲームを進めてしまった人は、\csware\luvwaveフォルダを開いて、

どれが1つ、必要な数だけコピーしたあとは規則にしたがって名前を変更すればよい。


ゲームディスクに深刻な傷や汚れのある場合ハードディスク起動がいいかも。

以下のアドバイスを実践することをオススメする。

2ちゃんねる luv waveスレ より

http://kagura.s18.coreserver.jp/idol/hgame2/html/1096343986.html

43 名前名無しさんピンキー[sage] :04/10/05 22:09:31 ID:Yedlu2p7

>>42

とりあえずHDDコピーしてプレイしてみたら?

その方が安定するし、CDエラーがあるかどうかもわかる。

1.DiscAの全ファイル適当な場所にコピー

セーブファイルがC:\csware\luvwaveなのでここがいいかも)

2.DiscBのStreamsフォルダの中身を1でコピーしたStreamsフォルダの中にコピー

3.修正パッチに入っている"luvwave.gde"を1に上書き

4."Egld1.exe"を起動し、"luvwave.gde"を開いてスタート

("luvwave.exe"から起動するとハングするので注意)

上記の場合でもLoadバグが発生することがあるが、Egld1.exeやluvwave.exeプロパティを開き、

Win95や98互換モードなどを設定したりすれば、ほぼ100%バグは乗り越えられるはず。

参考までに、2010年5月26日現在のわたしのPC環境

iMac10.1(21インチ) BootCampの以下の環境にて正常実行されました。

Macで正常動作したので、たいていのWindows機なら大丈夫なはず。

Operating System: Windows XP Professional (5.1, Build 2600) Service Pack 2

Language: Japanese

System Manufacturer: Apple Inc.

System Model: iMac10,1

BIOS: Default System BIOS

Processor: Intel(R) Core(TM)2 Duo CPU E7600 @ 3.06GHz (2 CPUs)

Memory: 2790MB RAM

luv waveは、バグや修正パッチ作業を乗り越えてでもやったほうがいいエロゲ

幸運を祈る。

2010-02-22

なのはの映画見てきた

生きてて良かったと思えるほど内容が素晴しかったのはもちろんだけど、もう一つ収穫があった

レイハさんバルディッシュさんの英語が聞き取れたことだ

英語勉強をはじめたのがStrikerSくらいだったから3年近く勉強していたわけだ

思わぬところで成長が実感できてうれしかった

やったことは速読速聴英単語をひたすらshadowing

今はcoreを終えてadvancedの半分くらいまでやった

2009-12-31

http://anond.hatelabo.jp/20091231110937

そんな時は prototype さんに聞いてみよう! ねえねえ prototype さん、CORE::atan2 の野郎の引数って何なの?

perl -e "print prototype('CORE::atan2');"
$$

あらまー。

2009-11-14

Top500

Rank Site Computer/Year Vendor Cores Rmax Rpeak Power1 DOE/NNSA/LANL

United States Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2008

IBM 129600 1105.00 1456.70 2483.47

2 Oak Ridge National Laboratory

United States Jaguar - Cray XT5 QC 2.3 GHz / 2008

Cray Inc. 150152 1059.00 1381.40 6950.60

3 Forschungszentrum Juelich (FZJ)

Germany JUGENE - Blue Gene/P Solution / 2009

IBM 294912 825.50 1002.70 2268.00

4 NASA/Ames Research Center/NAS

United States Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz / 2008

SGI 51200 487.01 608.83 2090.00

5 DOE/NNSA/LLNL

United States BlueGene/L - eServer Blue Gene Solution / 2007

IBM 212992 478.20 596.38 2329.60

6 National Institute for Computational Sciences/University of Tennessee

United States Kraken XT5 - Cray XT5 QC 2.3 GHz / 2008

Cray Inc. 66000 463.30 607.20

7 Argonne National Laboratory

United States Blue Gene/P Solution / 2007

IBM 163840 458.61 557.06 1260.00

8 Texas Advanced Computing Center/Univ. of Texas

United States Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008

Sun Microsystems 62976 433.20 579.38 2000.00

9 DOE/NNSA/LLNL

United States Dawn - Blue Gene/P Solution / 2009

IBM 147456 415.70 501.35 1134.00

10 Forschungszentrum Juelich (FZJ)

Germany JUROPA - Sun Constellation, NovaScale R422-E2, Intel Xeon X5570, 2.93 GHz, Sun M9/Mellanox QDR Infiniband/Partec Parastation / 2009

Bull SA 26304 274.80 308.28 1549.00

11 NERSC/LBNL

United States Franklin - Cray XT4 QuadCore 2.3 GHz / 2008

Cray Inc. 38642 266.30 355.51 1150.00

12 Oak Ridge National Laboratory

United States Jaguar - Cray XT4 QuadCore 2.1 GHz / 2008

Cray Inc. 30976 205.00 260.20 1580.71

13 NNSA/Sandia National Laboratories

United States Red Storm - Sandia/ Cray Red Storm, XT3/4, 2.4/2.2 GHz dual/quad core / 2008

Cray Inc. 38208 204.20 284.00 2506.00

14 King Abdullah University of Science and Technology

Saudia Arabia Shaheen - Blue Gene/P Solution / 2009

IBM 65536 185.17 222.82 504.00

15 Shanghai Supercomputer Center

China Magic Cube - Dawning 5000A, QC Opteron 1.9 Ghz, Infiniband, Windows HPC 2008 / 2008

Dawning 30720 180.60 233.47

16 SciNet/University of Toronto

Canada GPC - iDataPlex, Xeon E55xx QC 2.53 GHz, GigE / 2009

IBM 30240 168.60 306.03 869.40

17 New Mexico Computing Applications Center (NMCAC)

United States Encanto - SGI Altix ICE 8200, Xeon quad core 3.0 GHz / 2007

SGI 14336 133.20 172.03 861.63

18 Computational Research Laboratories, TATA SONS

India EKA - Cluster Platform 3000 BL460c, Xeon 53xx 3GHz, Infiniband / 2008

Hewlett-Packard 14384 132.80 172.61 786.00

19 Lawrence Livermore National Laboratory

United States Juno - Appro XtremeServer 1143H, Opteron QC 2.2Ghz, Infiniband / 2008

Appro International 18224 131.60 162.20

20 Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Supérieur (GENCI-CINES)

France Jade - SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz / 2008

SGI 12288 128.40 146.74 608.18

21 National Institute for Computational Sciences/University of Tennessee

United States Athena - Cray XT4 QuadCore 2.3 GHz / 2008

Cray Inc. 17956 125.13 165.20 888.82

22 Japan Agency for Marine -Earth Science and Technology

Japan Earth Simulator - Earth Simulator / 2009

NEC 1280 122.40 131.07

23 Swiss Scientific Computing Center (CSCS)

Switzerland Monte Rosa - Cray XT5 QC 2.4 GHz / 2009

Cray Inc. 14740 117.60 141.50

24 IDRIS

France Blue Gene/P Solution / 2008

IBM 40960 116.01 139.26 315.00

25 ECMWF

United Kingdom Power 575, p6 4.7 GHz, Infiniband / 2009

IBM 8320 115.90 156.42 1329.70

26 ECMWF

United Kingdom Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 8320 115.90 156.42 1329.70

27 DKRZ - Deutsches Klimarechenzentrum

Germany Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 8064 115.90 151.60 1288.69

28 JAXA

Japan Fujitsu FX1, Quadcore SPARC64 VII 2.52 GHz, Infiniband DDR / 2009

Fujitsu 12032 110.60 121.28

29 Total Exploration Production

France SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz / 2008

SGI 10240 106.10 122.88 442.00

30 Government Agency

Sweden Cluster Platform 3000 BL460c, Xeon 53xx 2.66GHz, Infiniband / 2007

Hewlett-Packard 13728 102.80 146.43

31 Computer Network Information Center, Chinese Academy of Science

China DeepComp 7000, HS21/x3950 Cluster, Xeon QC HT 3 GHz/2.93 GHz, Infiniband / 2008

Lenovo 12216 102.80 145.97

32 Lawrence Livermore National Laboratory

United States Hera - Appro Xtreme-X3 Server - Quad Opteron Quad Core 2.3 GHz, Infiniband / 2009

Appro International 13552 102.20 127.20

33 Max-Planck-Gesellschaft MPI/IPP

Germany VIP - Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 6720 98.24 126.34 1073.99

34 Pacific Northwest National Laboratory

United States Chinook - Cluster Platform 4000 DL185G5, Opteron QC 2.2 GHz, Infiniband DDR / 2008

Hewlett-Packard 18176 97.07 159.95

35 IT Service Provider

Germany Cluster Platform 3000 BL2x220, E54xx 3.0 Ghz, Infiniband / 2009

Hewlett-Packard 10240 94.74 122.88

36 EDF R&D

France Frontier2 BG/L - Blue Gene/P Solution / 2008

IBM 32768 92.96 111.41 252.00

37 IBM Thomas J. Watson Research Center

United States BGW - eServer Blue Gene Solution / 2005

IBM 40960 91.29 114.69 448.00

38 Commissariat a l'Energie Atomique (CEA)/CCRT

France CEA-CCRT-Titane - BULL Novascale R422-E2 / 2009

Bull SA 8576 91.19 100.51

39 Naval Oceanographic Office - NAVO MSRC

United States Cray XT5 QC 2.3 GHz / 2008

Cray Inc. 12733 90.84 117.13 588.90

40 Institute of Physical and Chemical Res. (RIKEN)

Japan PRIMERGY RX200S5 Cluster, Xeon X5570 2.93GHz, Infiniband DDR / 2009

Fujitsu 8256 87.89 96.76

41 GSIC Center, Tokyo Institute of Technology

Japan TSUBAME Grid Cluster with CompView TSUBASA - Sun Fire x4600/x6250, Opteron 2.4/2.6 GHz, Xeon E5440 2.833 GHz, ClearSpeed CSX600, nVidia GT200; Voltaire Infiniband / 2009

NEC/Sun 31024 87.01 163.19 1103.00

42 Information Technology Center, The University of Tokyo

Japan T2K Open Supercomputer (Todai Combined Cluster) - Hitachi Cluster Opteron QC 2.3 GHz, Myrinet 10G / 2008

Hitachi 12288 82.98 113.05 638.60

43 HLRN at Universitaet Hannover / RRZN

Germany SGI Altix ICE 8200EX, Xeon X5570 quad core 2.93 GHz / 2009

SGI 7680 82.57 90.01

44 HLRN at ZIB/Konrad Zuse-Zentrum fuer Informationstechnik

Germany SGI Altix ICE 8200EX, Xeon X5570 quad core 2.93 GHz / 2009

SGI 7680 82.57 90.01

45 Stony Brook/BNL, New York Center for Computational Sciences

United States New York Blue - eServer Blue Gene Solution / 2007

IBM 36864 82.16 103.22 403.20

46 CINECA

Italy Power 575, p6 4.7 GHz, Infiniband / 2009

IBM 5376 78.68 101.07 859.19

47 Center for Computational Sciences, University of Tsukuba

Japan T2K Open Supercomputer - Appro Xtreme-X3 Server - Quad Opteron Quad Core 2.3 GHz, Infiniband / 2009

Appro International 10368 77.28 95.39 671.80

48 US Army Research Laboratory (ARL)

United States Cray XT5 QC 2.3 GHz / 2008

Cray Inc. 10400 76.80 95.68 481.00

49 CSC (Center for Scientific Computing)

Finland Cray XT5/XT4 QC 2.3 GHz / 2009

Cray Inc. 10864 76.51 102.00 520.80

50 DOE/NNSA/LLNL

United States ASC Purple - eServer pSeries p5 575 1.9 GHz / 2006

IBM 12208 75.76 92.78 1992.96

51 National Centers for Environment Prediction

United States Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 4992 73.06 93.85 797.82

52 Rensselaer Polytechnic Institute, Computational Center for Nanotechnology Innovations

United States eServer Blue Gene Solution / 2007

IBM 32768 73.03 91.75 358.40

53 Naval Oceanographic Office - NAVO MSRC

United States Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 4896 71.66 92.04 782.48

54 Joint Supercomputer Center

Russia MVS-100K - Cluster Platform 3000 BL460c/BL2x220, Xeon 54xx 3 Ghz, Infiniband / 2008

Hewlett-Packard 7920 71.28 95.04 327.00

55 US Army Research Laboratory (ARL)

United States SGI Altix ICE 8200 Enhanced LX, Xeon X5560 quad core 2.8 GHz / 2009

SGI 6656 70.00 74.55

56 NCSA

United States Abe - PowerEdge 1955, 2.33 GHz, Infiniband, Windows Server 2008/Red Hat Enterprise Linux 4 / 2007

Dell 9600 68.48 89.59

57 Cray Inc.

United States Shark - Cray XT5 QC 2.4 GHz / 2009

Cray Inc. 8576 67.76 82.33

58 NASA/Ames Research Center/NAS

United States Columbia - SGI Altix 1.5/1.6/1.66 GHz, Voltaire Infiniband / 2008

SGI 13824 66.57 82.94

59 University of Minnesota/Supercomputing Institute

United States Cluster Platform 3000 BL280c G6, Xeon X55xx 2.8Ghz, Infiniband / 2009

Hewlett-Packard 8048 64.00 90.14

60 Barcelona Supercomputing Center

Spain MareNostrum - BladeCenter JS21 Cluster, PPC 970, 2.3 GHz, Myrinet / 2006

IBM 10240 63.83 94.21

61 DOE/NNSA/LANL

United States Cerrillos - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Infiniband / 2008

IBM 7200 63.25 80.93 138.00

62 IBM Poughkeepsie Benchmarking Center

United States BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Infiniband / 2008

IBM 7200 63.25 80.93 138.00

63 National Centers for Environment Prediction

United States Power 575, p6 4.7 GHz, Infiniband / 2009

IBM 4224 61.82 79.41 675.08

64 NCAR (National Center for Atmospheric Research)

United States bluefire - Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 4064 59.68 76.40 649.51

65 National Institute for Fusion Science (NIFS)

Japan Plasma Simulator - Hitachi SR16000 Model L2, Power6 4.7Ghz, Infiniband / 2009

Hitachi 4096 56.65 77.00 645.00

66 Leibniz Rechenzentrum

Germany HLRB-II - Altix 4700 1.6 GHz / 2007

SGI 9728 56.52 62.26 990.24

67 ERDC MSRC

United States Jade - Cray XT4 QuadCore 2.1 GHz / 2008

Cray Inc. 8464 56.25 71.10 418.97

68 University of Edinburgh

United Kingdom HECToR - Cray XT4, 2.8 GHz / 2007

Cray Inc. 11328 54.65 63.44

69 University of Tokyo/Human Genome Center, IMS

Japan SHIROKANE - SunBlade x6250, Xeon E5450 3GHz, Infiniband / 2009

Sun Microsystems 5760 54.21 69.12

70 NNSA/Sandia National Laboratories

United States Thunderbird - PowerEdge 1850, 3.6 GHz, Infiniband / 2006

Dell 9024 53.00 64.97

71 Commissariat a l'Energie Atomique (CEA)

France Tera-10 - NovaScale 5160, Itanium2 1.6 GHz, Quadrics / 2006

Bull SA 9968 52.84 63.80

72 IDRIS

France Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 3584 52.81 67.38 572.79

73 United Kingdom Meteorological Office

United Kingdom UKMO B - Power 575, p6 4.7 GHz, Infiniband / 2009

IBM 3520 51.86 66.18 562.60

74 United Kingdom Meteorological Office

United Kingdom UKMO A - Power 575, p6 4.7 GHz, Infiniband / 2009

IBM 3520 51.86 66.18 562.60

75 Wright-Patterson Air Force Base/DoD ASC

United States Altix 4700 1.6 GHz / 2007

SGI 9216 51.44 58.98

76 University of Southern California

United States HPC - PowerEdge 1950/SunFire X2200 Cluster Intel 53xx 2.33Ghz, Opteron 2.3 Ghz, Myrinet 10G / 2009

Dell/Sun 7104 51.41 65.64

77 HWW/Universitaet Stuttgart

Germany Baku - NEC HPC 140Rb-1 Cluster, Xeon X5560 2.8Ghz, Infiniband / 2009

NEC 5376 50.79 60.21 186.00

78 Kyoto University

Japan T2K Open Supercomputer/Kyodai - Fujitsu Cluster HX600, Opteron Quad Core, 2.3 GHz, Infiniband / 2008

Fujitsu 6656 50.51 61.24

79 SARA (Stichting Academisch Rekencentrum)

Netherlands Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 3328 48.93 62.57 531.88

80 SciNet/University of Toronto

Canada Power 575, p6 4.7 GHz, Infiniband / 2008

IBM 3328 48.93 62.57 531.88

81 IT Service Provider (B)

United States Cluster Platform 3000 BL460c, Xeon 54xx 3.0GHz, GigEthernet / 2009

Hewlett-Packard 7600 48.14 91.20

82 Moscow State University - Research Computing Center

Russia SKIF MSU - T-Platforms T60, Intel Quadcore 3Mhz, Infiniband DDR / 2008

SKIF/T-Platforms 5000 47.17 60.00 265.00

83 National Supercomputer Centre (NSC)

Sweden Neolith - Cluster Platform 3000 DL140 Cluster, Xeon 53xx 2.33GHz Infiniband / 2008

Hewlett-Packard 6440 47.03 60.02

84 IBM - Rochester

United States Blue Gene/P Solution / 2007

IBM 16384 46.83 55.71 126.00

85 IBM Thomas J. Watson Research Center

United States Blue Gene/P Solution / 2009

IBM 16384 46.83 55.71 126.00

86 Max-Planck-Gesellschaft MPI/IPP

Germany Genius - Blue Gene/P Solution / 2008

IBM 16384 46.83 55.71 126.00

87 Texas Advanced Computing Center/Univ. of Texas

United States Lonestar - PowerEdge 1955, 2.66 GHz, Infiniband / 2007

Dell 5848 46.73 62.22

88 HPC2N - Umea University

Sweden Akka - BladeCenter HS21 Cluster, Xeon QC HT 2.5 GHz, IB, Windows HPC 2008/CentOS / 2008

IBM 5376 46.04 53.76 173.21

89 Clemson University

United States Palmetto - PowerEdge 1950/SunFire X2200 Cluster Intel 53xx/54xx 2.33Ghz, Opteron 2.3 Ghz, Myrinet 10G / 2008

Dell/Sun 6120 45.61 56.55 285.00

90 Financial Services (H)

United States Cluster Platform 3000 BL460c G1, Xeon L5420 2.5 GHz, GigE / 2009

Hewlett-Packard 8312 43.75 83.12

91 Ohio Supercomputer Center

United States xSeries x3455 Cluster Opteron, DC 2.6 GHz/QC 2.5 GHz, Infiniband / 2009

IBM 8416 43.46 68.38

92 Consulting (C)

United States Cluster Platform 3000 BL460c G1, Xeon E5450 3.0 GHz, GigE / 2009

Hewlett-Packard 6768 43.00 81.22

93 National Institute for Materials Science

Japan SGI Altix ICE 8200EX, Xeon X5560 quad core 2.8 GHz / 2009

SGI 4096 42.69 45.88

94 IT Service Provider (D)

United States Cluster Platform 3000 BL460c, Xeon 54xx 3.0GHz, GigEthernet / 2009

Hewlett-Packard 6672 42.41 80.06

95 Maui High-Performance Computing Center (MHPCC)

United States Jaws - PowerEdge 1955, 3.0 GHz, Infiniband / 2006

Dell 5200 42.39 62.40

96 Commissariat a l'Energie Atomique (CEA)

France CEA-CCRT-Platine - Novascale 3045, Itanium2 1.6 GHz, Infiniband / 2007

Bull SA 7680 42.13 49.15

97 US Army Research Laboratory (ARL)

United States Michael J. Muuss Cluster (MJM) - Evolocity II (LS Supersystem) Xeon 51xx 3.0 GHz IB / 2007

Linux Networx 4416 40.61 52.99

98 University of Bergen

Norway Cray XT4 QuadCore 2.3 GHz / 2008

Cray Inc. 5550 40.59 51.06 274.73

99 Jeraisy Computer and Communication Services

Saudia Arabia Cluster Platform 3000 BL460c, Xeon 54xx 3 GHz, Infiniband / 2009

Hewlett-Packard 4192 39.70 50.30

100 R-Systems

United States R Smarr - Dell DCS CS23-SH, QC HT 2.8 GHz, Infiniband / 2008

Dell 4608 39.58 51.61

2009-11-01

http://anond.hatelabo.jp/20091101230642

The core assumption of BrownBoost is that noisy examples will be repeatedly mislabeled by the weak hypotheses and correctly non-noisy examples will be correctly labeled frequently enough to not be "given up on."

この文章の意味わからん(特に後半)のだけど、英文がおかしいのか俺の頭が悪いのか判断つかない。

2009-10-26

Windows7入れてみたら起動時間が1.3倍に。。。

CPU Core i7

メモリ3G

32bit版

起動時間が1.3倍ほどに・・・。

操作も遅くなった。

慎重になったがいいよ。

2009-09-18

Vistaが何故職場に入らないか

Windows7Vistaの比較

http://anond.hatelabo.jp/20090917201807


ってのを見た。



未だにVistaオフィスに入らない理由としては、重いとかではない。

実際、Vista Ult(32bit→64bit)を、それなりにリソースたっぷりCore i7)のPCで使い続けてみたけど、XPと比較して、OSのせいで処理が遅くなるとと感じるケースはあまりない。(但し後述で一部訂正する)

でも、Vistaは、ビジネスで使うにはトラップが多すぎる。

ビジネスで使われるPCってのは、今まで何とかPC仕事をこなせる程度の、一般的なPCスキルの持ち主を想定しなければならない。

この層が、Vistaや7を使いづらいと感じてしまうのであれば、それは抵抗されるに決まってるわけで。


まず、一般的なPCスキルの持ち主が感じるであろう問題。

1)UACの問題。いちいちダイアログが出るようでは、OSの事など知ったこっちゃ無いユーザーには恐怖しか与えない。(Win7では改善される)

2)XPであれば周りに操作を聞いたり相談したり、Tipsを交換しあえるのに、そんな中でVista渡されたら、こんなのどう使うのって怒られる。間違いなく。

3)勝手タスクで色々管理する。デフラグデフォルトスケジューリングされてるとか、何なの一体。(Win7でも改善されない)

4)見た目が変わる。いや、冗談ではなく、それだけで嫌がる人はいるんです。(Win7はもっと酷くなる)


次にリソースの問題。

一般的な職場を見渡せば判ると思うけど、基本的に職場で使われるPCってのは、5年程度使われるモノ。(リース契約とか使ってね)

2年前のPCなら、まず基本状態でVistaは稼動するだろう。けど、それ以前のPCはどう?といわれれば…ね。


さらに、環境の問題。

XPVistaが混在している環境なんか、管理側からしたって想像したくない。

そして管理Server自体が2003Serverだったら。

いきなりVistaクライアントとして放り込むわけにも行かず、かといって2008Serverにリプレースするなんて、面倒でしょうがない。


結局、職場VistaWindows7も同じだけど)を導入するってことになれば、基本的に部署単位より大きな単位で、一括でごっそりやるしかないわけで。

PC価格は下がってるし、一括導入をするコストは確かに安くなってはいるけれども、「今の状態を維持」するコストが、「Vista/7を導入して出てくるメリット」を凌駕するとはとても思えないんだよね。

さらに言えば、職場PCを大量に導入する場合は、環境を色々同一にしなければいけない(職場毎の基本カスタマイズが必要)なのだけれども、Vistaを導入する場合、やることが多すぎる。管理者側からして、2003ServerとVista(または2008ServerR2とWin7)との連携勉強しなおさなきゃいけない。


これらを踏まえて、たとえばPC職場で大量にWin7で置き換えると考えてみよう。

導入までに掛かるコストの割合は、

PCリース契約のやり直しと新規契約OS代はここに含まれてしまう。) 30%程度

運用管理用Server(Domain管理/FileServer/その他色々)の新規購入orリプレース 30%程度

運用教育学習コスト 20%程度

社員教育コスト 20%程度

こんな割合になるんじゃないだろうか。

だから、いくらWin7価格を安くしようが、PCを安くしようが、屁のツッパリにもならんくらいしか、全体のコストは下がらない。

更に、ネットワーク構成の見直しやら旧環境との相互運用なんてものまで考えだしたら、運用側としては逃げ出したくなるね。


こういう風に、職場Vistaや7を入れるには、掛かるヒューマンコストが半端でないってことを、きちんと説明しているIT系サイトが少なすぎるよなー、と感じる次第。

結局、Windows7が出荷されたとしても、XPサポートが切れるとか、リース契約が終了するとか、運用管理サーバを何かのきっかけでリプレースするとか、そういう事が無い限り、各現場Windows7バンバン入れるなんて幸せな路線は、ありえないという、お話

個人的には、XPサポートが切れたとしても、サードメーカーが「ウチがXPの面倒みまっせ」と手を上げて、そのサービスが大人気…なんて商売がなりたつんじゃないかと思う。致命的なセキュリティバグが出ない限りにおいて、だけども。IPv4限界に達するまでは、おそらく職場ではXPの天下が続くんじゃないかな。いや、それですら逃げ道はあるんだけども。



追記:Vista/7に関しては、その利用に関して2点「直接的な問題」もある。

1つ目は、バックグラウンドで動いているサービスが多すぎること。(Windows7では少し減ったみたいだけど)

処理に関してどれだけ性能の高いPCを使っていても、正直言えばXPや2000の軽さは望めない。1つのプロセスの処理時間そのものは変わらなくても、どこと無くもっさり感を感じてしまう…という体験からは、逃れられない。

とはいっても、XPも登場当時はこれで散々叩かれたわけで、慣れの問題かな。

2つ目は、同時に導入されるであろうMS-Office2007。これは家庭向けPCではあまり気がつかない(導入されていないケースが多いから)、最悪の問題だ。UIへの戸惑いは、PCスキルが無い人にとって致命的過ぎる。Win7ではこのUIアクセサリまで進出してるって?どんだけ。


追記の追記:最後に忘れてた。Office2007に入ってるIME2007!一番操作感を左右するであろう文字入力変換で、こんなバカ重いソフトなんか使わせたら、絶対クレームモノだ。とっとと窓から投げ捨てろ。どんだけ性能高いPC使ってても、これだけは導入禁止。

2009-08-04

雲をつかむような話

今朝の日経1面に日立とか富士通クラウドに100億づつ投資、みたいな煽り記事が出ていて気持ちが暗くなる。VM の個別のインスタンス毎に(OSアプリレベルの)設定は違うし、RDBMS を明日捨てるわけにもいかないだろうから、物理的なサーバスイッチの構成が多少均一化されたところで自分の知識が1年後には全く無用になっている筈もないのだが。とりあえず VM ハイパーバイザと hadoop 等の練習はしといたほうがいいかも、ただ未経験なら採ってはもらえないらしいからやっぱりジョブリレバンスは疑問。

クラウドというのは廃熱は減らしても物理ノード数を減らす方向には行かない(Core 7i をやめて Atom を複数並べる方向ということ)から、大手系列チェンジニアにとってはむしろ朗報なのだと思う。DC電源化もなんともいえない。やっぱり AC で行くような気がする。iSCSIイーサネット給電も(IP電話端末を除けば)普及していないし。

2009-07-13

http://iida.jp/calling/

2009-06-17

コモディティ化から程遠い、使うPCを考えてみる(動画制作編)

PCを買う」目的が、動画制作である場合、コストパフォーマンスを考えると、どうしてもPC自作になる。

…と勝手に思っているので、そういう用途向けPCを、自身の経験から勝手に構成してみた。

(有効期限3カ月位)



状況

エンコ専用ではない(普通アプリも使う)

予算30万以内

(ただしAdobeのお高いプロダクツは想定金額から外す)



CPU(3万円)

今あるH.264エンコボードは、まだちょっとこなれていない。(と思ってる)

エンコCPUパワーを使う事と、コストパフォーマンスを考えると、

 Intel Core i7 920

 AMD Phenom II X4 955

辺りか。動画編集普通使いでは、アプリが無数に走るため、コア数は割と重要。またエンコマルチスレッド対応のものが多く、コア数はそのまま時間短縮につながる。

ちなみにCore i7ベースのQPIも、動画編集エンコで効果大でした。



メモリ(1万円)

最高速ではなくとも、DDR3にはしておきたい。

昔ならここで値段がかなり食われたが、今では2Gx3枚でも1万円程度。良い時代だなー。

4GByteモジュールが出回って、10GByte以上載せられるなら、もっと大量に載せてエンコ用にRAM Disk領域を切るのもありかも。



GPU(2万円)

GPUが柔軟なエンコに対応できるようになる可能性を考えて、

 NVIDIA GeForce 9600 GTGTX 260

 AMD RADEON HD 4770~4870

辺りをオススメ



HDDOSデータ(3万円)

OS用と、動画制作で貯まる大量のデータを保存する為のHDD

どのような組み合わせでも良いと思うが、1T~1.5TByteのHDDを4基位買っておいて損は無い。



SSD(4万円)

HDキャプチャエンコなどで、Read/Write 120Mbps超えの高速ストレージが必要になる。

ある程度高速性をうたうSSD(32G~128G)を用意したい。出来れば2基以上でRADI0。

但し信頼性がかなり低い+バイト単価が高い領域なので、ここにデータは絶対貯めない。



■キャプボ(2万円)

前ならPV4一択だったけど、今だとintensityとかかなー。。



■その他(5万円)

M/BRAID対応のを買っておくと後で楽。光OUT等もあると便利。少し高めのM/Bを買っておくと、USB数やSATAポートの余裕がそのまま自由度に繋がる。

電源はケチらない。500w以上で静音タイプのものをきちんと個別で買う。

ケースはお好みで。但しメンテ性を一番に選ぶべきかも。(今後色々と機器を弄る事になるから)



OS(2万円)

OEMWindows Vista Ultimate 64bitなど。Windows 7が出たら載せ換え。

XPが入手出来ればそれも良いけど、ここまでのスペックで組めば、Vistaのトロさはまず感じない。

メモリ量を生かすために64bit版オススメ。64bitに対応しないようなソフトはこの時点で見捨ててOK。



Office動画編集ブラウザエディタiTune、その他大量の動画編集用ツールを入れたが、

少なくとも今までに64bitの為に導入できなかったのは、ゲームが1つだけだった。

但しPV4を使う場合、ちょっとした小技が必要。



ディスプレイ(4万円)

最近急激に安くなったフルHDモニタを2枚。デュアルディスプレイは金額に見合う以上のメリットがある。



※もし特価品で1920x1200(16:10)のモニタが手に入るなら、ちょっと足してもそちらがオススメ。縦1024は、ブラウジングの時にちょっとキツイ。

但しこのサイズは、フルHD映像コンテンツ16:9)の再生時に少々面倒な事になる。どちらをとるか(もしくはモニタを1枚縦にするか)は頻度によるかも。



ここまでで26万、その他色々小物(オススメとしてはWebカムやヘッドセット、ちょっとお高いキーボードマウスなど)を入れて、30万位。

「えー?普通DELLとかで買って足せば良いじゃん」って?いやいや、電源やM/B RAIDCore i7の選択などは、自作だからこそ出来る小技だし、それが後になって効いて来ます。





って、おれは、増田に何を書いてるんだろーか。。w

もし何かあったら、トラバはてブ米にて、テキトーにツッコミオススメを入れてください。

2009-03-01

http://anond.hatelabo.jp/20090301175021

なぜCore i7のほうが安いのかという方向への疑問はないの?CPUが安すぎとは思わないのか。個人的には両方安いと思うが。

服ってなんであんなに高いの?

材料費・加工費は安いはず。デザイン価値があるというなら、

その服がどうしてCeleronより高いのか、ブランドつきなら、どうしてCore i7より高いのか説明していただきたい。

2009-01-11

DENPAはオタクディズニーランド

DENPA!!!はクラブイベントではなく、オタク的な記号と想像力に支えられたディズニーランドでしかないと思う。もしDENPAが動物化典型的フロア進化なら同時多発的に同じようにクラブイベントでもこうした現象が起こっているはずではないだろうかと思うんだけれども、起こっていないし起こりそうもない気がする。

実際に他のJ-COREイベントに足を運んでみた経験から、メガピアにしても舞台アーティストがいて旧来のオタ芸を打つという空間と変わりがなかった気がするし、小さなJ-COREイベントではJ-COREファンによる普通クラブイベントだった記憶がある。そんな中でDENPA!!!は明らかに特殊な空間を演出していたのと同時に、物凄く閉じられた空間であったようにも記憶している

想像してみて野外レイヴのようにDENPAが野外で行われる事は想像できない。シミュラークルの力は弱まるからね。それをクラブとして新しいといえるのだろうか?

確かに、それをクラブという形に持ってきて新しいイベントにしたのは非常に面白いと思うし、これからも一定の人気を獲得していくだろうと思う。ディズニーというキーワードを元に大人から子供まで楽しめる子供の楽園を作ったディズニーランドのように、オタクというキーワードを元にオサレだろうとオタクだろうと、違和感を感じなければ楽しめる楽園をDENPA!!!という空間が作っただけに過ぎない

ライトオタクっていうのは大の大人でもディズニーランドへ行って騒いでミッキー大好きとかいえるようなものと似てるよね

http://anond.hatelabo.jp/20081231121833

削除された記事を復活させた

2008-12-02

http://anond.hatelabo.jp/20081202002104

まあ確かに当初は、

Microsoft is expected to recommend that the "average" Longhorn PC feature a dual-core CPU running at 4 to 6GHz; a minimum of 2 gigs of RAM; up to a terabyte of storage; a 1 Gbit, built-in, Ethernet-wired port and an 802.11g wireless link; and a graphics processor that runs three times faster than those on the market today.

http://www.microsoft-watch.com/content/operating_systems/longhorn_to_steal_limelight_at_winhec.html

なんて言われたくらいだしねえ。そのうち実際の製品が出来上がってくるにつれ、いつも通り実際に必要なスペックは隠されて、マーケティング上の戦略で「もっと低スペックでも動きますよ」って言うようになっていくんだけど。

結局WinFSが無くなったりなんだりで必要スペックは実際に下がったんだろうけど、Windows Vista開発者の本音としてはこのくらいのスペックが必要だと思っていたんじゃないかな、って思う。

ログイン ユーザー登録
ようこそ ゲスト さん