はてなキーワード: ラグランジアンとは
超弦理論の時間依存背景とド・ジッター空間における量子論のモデルについて述べる。
基本的な設定として、(M, g)なる時空を考慮する。ここでMは(d+1)次元多様体、gはその上の計量である。dは超弦理論では9、標準的なド・ジッター空間では3となる。
統一的モデルの作用積分は S = Sstring + SdS + Sint と定義される。Sstringは超弦理論の作用、SdSはド・ジッター空間の作用、Sintは相互作用項を表す。
超弦理論部分はPolyakov作用を基にし、以下のように表される:
Sstring = -1/(4πα') ∫ d²σ √(-h) hᵃᵇ ∂ₐXᵘ ∂ᵇXᵛ Gμν(X) + フェルミオン項
ここでα'は弦の張力、hₐᵇはワールドシート計量、Xᵘは標的空間座標、Gμνは標的空間計量である。
SdS = 1/(16πG) ∫ d^(d+1)x √(-g) (R - 2Λ)
ここでGはニュートン定数、Rはリッチスカラー、Λは正の宇宙定数である。
相互作用項は Sint = ∫ d^(d+1)x √(-g) Lint(Xᵘ, φ) と定義される。φはド・ジッター空間上の場、Lintは相互作用ラグランジアンである。
系の量子化は経路積分形式で Z = ∫ DXDGDΦ exp(iS[X,g,φ]) と表される。
Seff = 1/(16πGeff) ∫ d⁴x √(-g) (R - 2Λeff) + 高次項
ここでGeffとΛeffは量子補正を含む有効的なニュートン定数と宇宙定数である。
AdS/CFT対応の拡張として、Zstring[J] = ZCFT[J] なる関係を仮定する。
ド・ジッター空間の状態方程式 p = wρ, w = -1 を考慮する。pは圧力、ρはエネルギー密度、wは状態方程式パラメータである。
非摂動的効果を含めるため、Z = Zpert + Σn Cn exp(-Sinst,n) なるインスタントン寄与を考慮する。
時空のトポロジー変化を記述するため、コボルディズム理論を用い、∂M = Σ1 ∪ (-Σ2) なる関係を考える。
量子ゆらぎを考慮するため、gμν = g⁽⁰⁾μν + hμν なる計量の揺らぎを導入する。
複素数体上の楕円曲線 E と、そのミラー対称である双対楕円曲線 Eᐟ を考える。このとき、E のフクヤ圏 𝓕(E) は、Eᐟ の連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) と三角圏として同値である。
𝓕(E) ≃ 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ))
証明:
1. 交点の特定: L₀ と L₁ が E 上で交わる点の集合を 𝑃 = L₀ ∩ L₁ とする。
2. 生成元の設定: フロアーコホモロジー群の生成元は、各交点 𝑝 ∈ 𝑃 に対応する形式的なシンプレクティック・チェーンである。
3. 次数の計算: 各交点 𝑝 の次数 𝑑𝑒𝑔(𝑝) は、マスロフ指標やラグランジアンの相対的な位置関係から決定される。
4. 微分の定義: フロアー微分 𝑑 は、擬正則ストリップの数え上げによって定義されるが、楕円曲線上では擬正則ディスクが存在しないため、微分は消える(𝑑 = 0)。
5. コホモロジー群の計算: よって、𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) は生成元の自由加群となる。
𝐻𝑜𝑚ⁱ(𝓔, 𝓕) = 𝐸𝑥𝑡ⁱ(𝓔, 𝓕)
Φ(L, ∇) = 𝑝₂*(𝑝₁*(𝓛ₗ) ⊗ 𝓟)
ここで、𝑝₁: E × Eᐟ → E、𝑝₂: E × Eᐟ → Eᐟ は射影であり、𝓛ₗ は L に対応するラインバンドルである。
- L₀ と L₁ の交点 𝑝 ∈ 𝑃 に対し、そのフロアーコホモロジー群は生成元 [𝑝] で張られる。
- 次数 𝑑𝑒𝑔([𝑝]) は、ラグランジアンの相対的な位相データとモノドロミーから決定される。
2. Ext 群の計算:
- Φ(L₀, ∇₀) = 𝓛₀、Φ(L₁, ∇₁) = 𝓛₁ とすると、Ext 群は
𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) ≅
{ ℂ, 𝑖 = 0, 1
0, 𝑖 ≠ 0, 1 }
3. 対応の確立: フロアーコホモロジー群 𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) と Ext 群 𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) は次数ごとに一致する。
超弦理論を数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。
𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ
ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。
超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。
BV形式はゲージ対称性と量子化を扱うためにホモトピー代数を使用する。
Δ exp(𝑖/ℏ 𝑆) = 0
ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。
𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
以上の数学的構造を用いて、超弦理論における重要な定理である「ホモロジカル・ミラー対称性の定理」を証明する。
ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である。
𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
1. フクヤ圏の構築:
- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数の消失)を満たすもの。
- 射:ラグランジアン間のフロアーコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。
2. 導来圏の構築:
- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。
- 合成:連接層の射の合成。
- ファンクターの構成:ラグランジアン部分多様体から連接層への対応を定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。
- 構造の保存:この関手が 𝐴∞ 構造や三角圏の構造を保存することを示す。
- 物理的対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデルの物理的計算が一致することを利用。
- Gromov–Witten 不変量と周期:𝑋 の種数ゼロのグロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算と対応する。
5. 数学的厳密性:
- シンプレクティック幾何学の結果:ラグランジアン部分多様体のフロアーコホモロジーの性質を利用。
- 代数幾何学の結果:連接層の導来圏の性質、特にセール双対性やベクトル束の完全性を利用。
結論:
以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカル・ミラー対称性の定理が証明される。
ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロアー境界演算子 ∂ を用いてコホモロジーを定義:
∂² = 0
𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im ∂
∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0
Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)
1. 古典力学 (Classical Mechanics):
古典力学では、粒子の運動は時間 t の関数 q(t) で表され、ニュートンの運動方程式を満たすのだ:
q̈ = -U'(q)
ここで、U(q) はポテンシャルエネルギーである。運動方程式は、ラグランジアン L(q) = 1/2q̇² - U(q) に基づく変分問題として再定義でき、作用積分 S(q) = ∫ₐᵇ L(q)dt の極値点として運動を記述するのだ。これは、最小作用の原理とも呼ばれるぞ。
2. 古典場の理論 (Classical Field Theory):
古典場理論では、粒子ではなく、連続的な場 φ(x,t) を考えるのだ。この場は部分微分方程式に従い、例えば波動方程式
□φ = 0
で記述されるぞ。ラグランジアン L(φ) は微分多項式であり、作用積分 S(φ) = ∫_D L(φ)dx dt を極小化することによって運動方程式(オイラー-ラグランジュ方程式)が導かれるのだ。
古典力学と異なり、量子力学では粒子は古典的な軌道を持たず、確率的に動くのだ。ブラウン運動をモデルにして、粒子の位置 q(t) は確率密度
P(q) ∝ e^(-S(q)/κ)
に従い、ここで S(q) = ∫ₐᵇ (1/2q̇² - U(q)) dt は作用、κ は拡散係数である。このような確率的動力学の期待値は、経路積分を用いて計算されるぞ。
量子力学ではブラウン運動モデルを基にしつつ、拡散係数 κ を虚数 iℏ に置き換えるのだ(ℏ はプランク定数)。したがって、量子力学の相関関数は次のように表されるぞ:
⟨q_j₁(t₁) ··· q_jₙ(tₙ)⟩ = ∫ q_j₁(t₁) ··· q_jₙ(tₙ) e^(iS(q)/ℏ) Dq
5. 量子場理論 (Quantum Field Theory):
⟨φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ)⟩ = ∫ φ_j₁(x₁, t₁) ··· φ_jₙ(xₙ, tₙ) e^(iS(φ)/ℏ) Dφ
ただし、この積分は複素測度に基づくため、数学的に厳密に定義するのが困難であり、理論物理学における重要な課題となっているのだ。
究極理論がわからない現状、もし仮に「我々の世界が不安定な真空にいる」ことを仮定すれば
相応のエネルギーを加えて真の真空に落とす(相転移させる)ことで物理法則が変更されるという
人為的ネオエクスデス「うちゅうの ほうそくが みだれる!」 ができますね。
イメージ的には過冷却です。すでに相転移が起きているのに気がつかないで元の真空にとどまっています。ちょっと突くと一瞬で凍ります。
現に、新しい加速器が作られる度になんかスゲェ無理矢理な模型を作って「加速器のせいで世界が滅びる!」系の論文がarXivに投稿されたりします。意外と増田と同じことを考える人がいるんですね。ただしこれらの論文は一瞬で否定されます。なぜならば、加速器で作るビームなんかよりも中性子星ガンマ線バーストのほうがよほど強いからです。宇宙強い。人類の技術は弱い。驕るなよ人類。
前から不思議だったけど、これらの法則って経験から導き出されたものであって、その法則がどうやって存在してるかは不明なんだよな
以下、意味は取らなくて良いので流れと単語だけ拾ってください:
たとえばエネルギーの保存は時間方向の並進対称性、運動量保存則は空間方向の並進対称性から、角運動保存則は回転対称性から導き出されるといえるでしょう。
(相対論的には時間と空間は同時に取り扱うのですがちょっと難しくなるので簡易な書き方をしています)
時空の対称性が決まる → ラグランジアンが決まる → オイラーラグランジュの方程式(運動方程式)
ここまでよんだ?
なら次は、ランダウ・リフシッツ「力学」の最初の20ページくらい読んでください。
前提知識は微積分です。ここまで読めば上の文章はだいたい理解できるかと思います。
そして次にあなたはこう思うでしょう
「最小作用の原理っていったいなんなんだ? 世界はなぜこんな原理に従う?」
そう思ったなら次は量子力学です。JJサクライ「現代の量子力学」の経路積分のページまで読み進めましょう。
ここまでくれば霧が晴れるように見通せるようになるはずです。
物理理論とは何であるかが把握できるかと思います。ここから先はご自由に。
なお、JJサクライは物理科ではちょっと ’進んだ’ 内容とされています。普通は2冊目に読む本ですね。が、ハテナーにとってはむしろ読みやすい本かと思います。だってどうせ君ら情報系でしょ?なんかプログラムとか書ける人たちでしょ??なら、ブラケット表記の方が慣れていると思うんですよ。たぶん見ればわかるよ。
数学や物理を大人になって学び直したら、「そんなことあるの?」とびっくりした概念を書いていく。
地球儀を切り開いて、平面にしようとしても、2次元の世界地図はできません。
という定理。
3次元⇨2次元への距離を保った変換はできませんということを示しており、これを発展させた弟子のリーマンが、「じゃあ、4次元から3次元とか、もっと高次元でも同じじゃない?」とリーマン幾何学を創出。後の相対性理論(空間が曲がる)の記述へと繋がる。
2位 論理回路
信号機とかのプログラムを電気回路で表現するにはどうすればいいのか?ということの理論。
4ビットの信号(0101みたいなの)だと、16通り応答が必要となる。簡単に考えれば16通りの設計が必要そうだけど、カルノー図を使った簡易化という謎のテクニックにより、なんとかなり簡単に電気回路を設計することができる。
物理では、位置エネルギーとか運動エネルギーとか謎のエネルギーという量が出てくる。
なんと、解析力学では、「謎のエネルギーの方が本質であり、運動とか位置とかはエネルギーから導かれる。エネルギーが先、運動や位置が後」という理論。
4位 再起構文
再起構文というのを書くと、ナルトの「多重影分身」みたいなプログラムが書けたりする。
いまだに原理を理解できていないけど、結果的にそうなってる。不思議すぎる。
なんと、光の半分くらいまでしか画像を読み取ることができない。
光以外にも、エコー(超音波)で体の中を観れるけど、あれは超音波の波長が0.5mmとかなら、0.25mmまでの物しか判別できない。
だから何?と思ったけど、半導体制作で「波長が短い(nm)の光を使って半導体を描くので、この理論を使います」とか、いろんなところでかなり効いてくる理論みたい
6位 5次以上の方程式の解の公式(代数的な表現の)はない。(ガロア理論)
これは証明をぜひ追ってみて欲しい。
実際に、これらの手法が提案されたときは数学的な記述ができなくて、「それ本当に成り立つの?なぜ?」ということで数学者が紛糾。
量子力学とかも物理の不安定な理解が、数学的にどう不安定なのかが納得できる。
これは 物理学 Advent Calendar 2014 の記事です。
僕は blog を持っていないので はてな匿名ダイアリー をお借りします。
しばらく話すうちにおじさんが知りたいのは『ヒッグス粒子そのもの』ではなく
『なぜ研究者はヒッグス粒子発見に大騒ぎしたのか?』なのではないかと気が付きました。
研究者がヒッグス発見に大騒ぎした理由はあまり説明されてなかった気がします。(僕が見逃しただけかもしれません)
なのでちょっと書いてみようというのがこの記事です。今更な話ですみません。
床屋での世間話的ないいかげんな話です。あまり中身はありません。
普段はてなを見ている人なら全部知っている内容かもしれません。あまり期待しないで読んでください。
(あと間違いがあったらすみません)
これから物理の基礎理論が大発展する(かもしれない)からです。
場の理論を聞いたことはあるでしょうか? 量子力学を 相対論+多粒子系 に拡張したものです。
古典力学は量子力学の、量子力学は場の理論の、近似的な理論といえます。
Ruby が C言語で記述されているように、量子力学は(原理的には)場の理論で記述できるべきものです。
C言語が正しくて Ruby が「間違っている」という訳ではないように
場の理論が正しくて量子力学が「間違っている」訳ではありません。ただ、適用できる範囲が違うのです。
さて、量子力学や場の理論がプログラム言語だとしたら、コードは何でしょうか?
実は「ラグランジアン」と呼ばれているものがそれに相当します。
ややこしいのですが「ラグランジアン」も理論と呼ばれています。
素粒子理論の研究者が「理論を作る/改良する」と言ったら、それは大体ラグランジアンの改良を指しています。 (注[1])
素粒子理論の研究者は、世界のあらゆるものを記述できるラグランジアンをつくろうとしています。
[これ]が場の理論で書かれたラグランジアン、標準理論と呼ばれているものです。(ごめんね。良い画像が見つからなかった。)
僕たちの世界で現在わかっている ”ほとんど” 全てを説明することができます。
世界の全てを記述するコードがこんなにシンプルなんて結構びっくりでしょう? そんなことない?
ちなみに一番下の項がヒッグスです。
これまで研究者達は理論の予想と実験結果の違いをヒントに理論を修正してきました。
ところが困った事が起こりました。
実験結果と全部合うなら標準理論が完璧な理論なのか? ・・というとそうではありません。
多くの研究者が現在の標準理論はまだ不完全であると考えています。
まず重力がうまく扱えません。それどころか様々な理由から場の理論そのものが、より基礎的な理論の有効理論(近似的な理論)ではないかと今では考えられています。
理論は不完全なことが分かっているのに、修正するヒントがなくなってしまったという訳です。
そんなわけで標準理論はここ40年ほどあまり変わっていません。
こんな中、標準理論で唯一まだ発見されていないのがヒッグス粒子だったのです。
ヒッグス粒子が発見されてその質量が決まるだけでも大きなヒントになるというわけです。
それはようやく標準理論のバグ取りが可能になるから。実に40年ぶりに。
つまりヒッグス粒子は研究者にとって最後の希望とかそういう・・いや、最後でもないか。
まだLHCに発見してほしいものはいろいろあります。(超対称性粒子とか・・。)
[1] 場の理論や量子力学の修正ではなく、ラグランジアンの修正です。
皆さんも自分のつくったプログラムにバグがあったら C言語のバグではなく、まずは自分の書いたコードのバグを疑いますよね? つまりそういうことです。
物理学 Advent Calendar 2014 を立ち上げ管理してくださった id:tanaka733 さん、 id:aetos382 さんに感謝致します。
皆さんの記事を楽しませていただきました。飛び入り参加ですみません。
お目汚しすみませんでした。
メリークリスマス。良い夢を。
id:allthereiznika わかりやすかった。出来れば参考ページ・書籍も示してくれるともっと良かった。
一般向けの解説書は僕はよく知らないのですが
こんなのが出るみたいですね。目次を読む限り良さそうです。
Chapter2 が標準理論の破れの話ですが、どうも最近の話題が入っているようなのでちょっと差し引いて読んでください。
Chapter3 が標準理論の改良の話(超対称性理論etc) 。 それから上でちょっとでてきましたが、
「場の理論」自体がより基本的な理論の有効理論であると思われています。(より基本的な言語・・アセンブリ言語とでも例えるべきでしょうか?)