「電気分解」を含む日記 RSS

はてなキーワード: 電気分解とは

2023-11-14

家で水道水電気分解して燃料にしたらインフラ水道だけでいいんじゃね?

最初電気分解する電気電池で。

2023-10-16

anond:20231016090503

潜水艦は通常型なら圧縮酸素、原潜なら水の電気分解

宇宙ステーション圧縮じゃなかったか

どの場合二酸化炭素一定量超えると死ぬのでその吸着をフィルターでやってる

アポロ13なんかは事故った時にフィルターが使えなくなって、本来使うはずじゃなかったものをありあわせのもので無理やり使えるようにして生還したのが映画描写されてて面白い

anond:20231016090503

大まかには同じで、圧縮してタンクに貯めてるのと、水を電気分解して作る。

2023-09-19

anond:20230919112540

なんか色々ごっちゃになってるね。

化学的には物質って電子1個の増減で振る舞いが全然変わるので、

ナトリウム塩素イオンと単体はまるで別物で、イオンが単体になったり、単体がイオンになったりするには、けっこうなエネルギー化学反応する相手必要になる。

水気がない時の固体の塩はNa+とCl-が交互に並んで引き付け合うような形になってるが、水に溶けると(水和すると)バラバラ

ところでNaClっていうのはそもそも塩として袋に入ってる状態でも分子ではない。

電子大好きなCl電子を1個拾ってCl-になってて電子大嫌いなNa電子を1個捨ててNa+になってるから電気的に引き付け合う力で結晶になってるだけで、

どこからどこまで分子という明確な区切りがあるわけじゃない。だから1:1の割合ですよって意味組成式と呼ぶ。分子式と呼ばない。

H2O共有結合と呼ばれる状態でこれは分子。液体中でも分子の形だが、電気陰性度の差によってHは+っぽくOは-っぽく分極してる極性分子なので、Na+が-っぽいOの部分に囲まれCl-が+っぽいHの部分に囲まれる。これが溶けるメカニズム

基本的に極性は似た者同士が溶けるから、極性がほとんどない油は水に溶けない。何なら水分子自分たち自身の分極があるから、水分子同士ゆるやかに引き付け合ってるので無極分子が入る隙がない。

食塩水の中でNa+Cl-がナトリウム塩素としてそれぞれの働きを行わないのは、

そもそもNa単体とNa+が似て非なるものから

Na単体は金属ナトリウムと呼ばれるが、空気中で放っておくと勝手酸素と反応してしまうから灯油の中で保存するし、

水に投げ込んだらものすごい勢いで反応する。https://www.youtube.com/watch?v=SpoAOzDmndk


原子はとにかく最外殻電子を8個に揃えたがるのでナトリウムのような最外殻電子が1個になってる金属単体はすぐに電子を投げ捨てようとする。つまり反応性が高い。

でも投げ捨てた後のNa+は希望通りに最外殻電子が8個なったので大人しい。元素の中でもトップクラス電子を投げ捨てたがるやつなので、普通にしてる限りはNa+からNaに戻ろうとすることはない。

NaClを超高温にしてドロドロに溶かした状態電気分解したりしないと金ナトリウムには戻らない。

不安定で反応しやす状態っていうのはその物質自体が持ってるエネルギーが大きい状態で、安定した状態エネルギーが低い状態なので、

不安定→安定になった反応を逆戻ししようとすると高いエネルギー(超高温とか)と電子を送ってくれる何か(電気分解の場合陰極電子を送り込んでくれる)が必要になるので、普通に水の中で煮てる程度じゃどうにもならん。

塩素も第17族のハロゲンと呼ばれる原子で「あと電子が1個あれば最外殻電子が8個で安定なのに……」と欲求不満なので、すぐに電子をどこかから奪ってCl-になろうとする。

Cl-をCl2に変えるのはNaほど大変じゃないけど、塩水を煮てる程度じゃ変わらん。

もちろん塩水をずっと煮続けたら塩の結晶が手に入るが、これは化学反応ではなく、沸点が100℃の水だけ蒸発して、溶ける先がなくなって沸点がずっと高い固体の塩だけ残ったってこと。



食塩水から電気分解で塩素を取り出してるのは気体の塩素ガス(Cl2)でこれは毒性がある(塩素漂白剤を混ぜるな危険と言われる理由も、塩素ガスを発生させる反応があるから

しかし塩水に溶けてる塩化物イオンCl-は安定で特に害はない。ハロゲン電子があと1個あれば最外殻に電子が8個入って安定するのに……と元々電子をとても欲しがっているから陰イオン状態が一番安定してる。



塩化物イオンはたしかに銀や鉛などの金属イオンにくっついて沈殿を作ったりする。

から塩酸は謎の液体Xに溶けてるもの判別する工程に使える

化学について基礎的な知識をお持ちの諸兄にご教示いただきたい

私、高校化学を真面目にやらなかった人です。

塩はなんで水に溶けるんだろうとふと思ってしらべたら、食塩ナトリウムイオン(+)と塩化物イオン(-)が結合していると分かりました。

水は電気陰性度が酸素側がマイナス水素側がプラスに偏っていて、それぞれの極性に合わせて食塩ナトリウムイオンと塩化物イオンバラバラに分かれてしまうと。

さてここで疑問なのですが、水の中で食塩ナトリウムイオンと塩化物イオンに分かれたということなのですが、なんで食塩水として食塩と同じ振る舞いをできるのですか?

食塩水を飲んだ時に、塩の味がして、体も塩として処理ができるのはなぜですか?

水を乾かしたら塩が残るのはなぜですか?

ナトリウムとして、塩素としてそれぞれの働きを行わないのはなぜですか?

僕の想像なんですけど、分子バラバラになったとしても、ある程度の範囲電気的な結合があって食塩として同じ振る舞いができているとかそういうことですか?分子が離れていても同じグループとしてふるまっているようなイメージです。

食塩から塩素を取り出すのは、イオン交換膜を真ん中に置いて電気分解をしないとできないとも聞きました。イオン交換膜で分子間の電気的なつながりを切らないといけないということですか?

詳しい説明をおねがいいたしま

追記1

なるほど、食塩なめる食塩水になって、ナトリウムイオンや塩化物イオン人間は反応しているんですね。

食塩食塩水ってのはやはり化学的に別物としてふるまうんですね

食塩が水に入って、ナトリウムイオンと塩化物イオンに分かれますが、塩化物イオンって何かとくっつきそうですよね。

そういえば水溶液に何かを垂らして沈殿物を作るとかい実験がありましたね。そういうことですかね

追記2

なるほど、食塩って個体でも食塩としてあるわけではなく、ナトリウムイオンと塩化物イオン電気的な引き合う力でつながっているだけで、食塩結晶でも明確な区切りがあるわけじゃないんですね。

ナトリウムイオンと塩化物イオンナトリウム塩素とはまた別のものというのも納得です

2023-08-21

anond:20230821113336

未来技術原子炉用のエネルギー普通有機物から取ってるんだろうと思うよ。

ウランを飲んでる描写もないし。

水を飲んで電気分解するなどにせっせとエネルギーを費やさないと過剰発電が恐ろしいが。

2023-06-23

anond:20230622192256

とっくに酸素が切れているはずなのに、まだSOSの音が聞こえてきたら、そういうことだよな…

その場合最後に残りそうなのは船長かな

自殺航海だったら亡くなるのだろうが救われないな

もし植物を持ち込んでいたら少しは酸素が作れるかな

水を電気分解したら水素も発生してしまうが、それを浮力として使えば浮かび上がれるかも

2023-03-14

anond:20230313221142

塩田で作るタイプの塩だと不純物?である塩化マグネシウム空気中の水分を吸収してベタついたりするが

電気分解で作る精製塩だとそれもない

2022-11-07

anond:20221107122853

>現状の水素製造プロセスが電力食いだからこそ、グリーン水素とかCCUSやってるし勝算あってやってるんだから

「現状の水素製造プロセスが電力食い」であることと「グリーン水素とかやってる」ということを「だからこそ」で繋いでてビンビンに〈わかってない感〉を感じるんだけど、大丈夫か? グリーン水素って、電力だけで作る、電気分解=「現状の水素製造プロセス」で作る水素のことだよ? もしかしてブルー水素と間違えてるとか?

CCUSについては上でもちょっと触れた。政府産業界はやるやる、やれるやれる言ってるけど、宣言通りのCO2回収率を、経済合理性のあるコスト範囲で達成できる見込みはほとんどない。2008年経産省計画では2020年にはCCUSが実用化されてる予定だったが、コストの点でも回収率の点でも全く実用化のメドが立っていない。勝算あってやってるわけじゃなく、やらなきゃ死ぬことが確定してて、引くに引けないからズルズル続けてるだけ。つまりサンクコストを見切れてないだけ。コンコルド錯誤。

2018 年の経済産業省検討会の試算では、kWh 当たりの CCS 付き石炭火力の発電コストは 15.2〜18.9 円とされている。一方、事業太陽光発電は 2017 年実績で kWh 当たり 17.7 円、陸上風力は 15.8 円と、CCS 付き石炭火力と遜色ない程度

まで低下しており、さらに 2030 年にはそれぞれ 5.1 円、7.9 円程度にまで低下する見通しである。すなわち、政府実用化を目指す 2030 年には、CCS 付きの石炭火力は、大幅な価格低下を実現した再生可能エネルギーに対して完全に高コストになっていると予測され、経済的な優位性を確保できる可能性はほとんどない。

(略)

CCSの研究は、旧通産省時代の1980 年代から進められ、2020 年頃の実用化を目指してきた。しかし、現在稼働中のCCS付き発電所世界で2箇所しかなく、国内でも小規模の実証段階を出ず、当初の見通しは大きく崩れている。既に2020年実用化の可能性は消え失せ、現在は、10年遅れの 2030 年に目途を付けている。しかしこれまでの状況を踏まえれば、2030年実用化の可能性も極めて低いと考えられる。

https://www.kikonet.org/wp/wp-content/uploads/2019/06/2019-position-paper-CCUS.pdf

経済合理性というのは法制度や環境倫理よりもはるかシビア産業界を統制する「ルール」で、結局企業というのは金が儲からなければやってる意味がないので、経済性の見込めない技術にはマジで先がない。たとえばEUは、もうCCSによる電力のグリーン化は諦めてる。なぜ日本ならやれると思うのかがわからない。

欧州連合の提起する8つのシナリオでは、CCSは化石燃料による火力発電から排ガス対策としては、殆ど想定されていない(2~6%)。2019年3月に開催した自然エネルギー財団の国際シンポREvision2019には、欧州連合の脱炭素戦略策定した担当者マシューバリュ氏(欧州委員会 再生可能エネルギーおよびCCS政策政策オフィサー)が登壇している。私はバリュ氏が登壇したパネルモデレータを努めていたので、直接、この点をバリュ氏に質問したが、バリュ氏の回答は、「10年前、EUは火力部門のCCSに大きな期待をかけたが、経済的あるいは技術理由で実現しなかった。もはや電力部門対策としての位置づけはない」というものだった。

https://www.renewable-ei.org/activities/column/REupdate/20210930.php

石油火力や石炭火力は、EUでは普通に発電するだけでも劇的にコストが下がった再エネにメリットオーダーで負けつつあるのに、CCUSのために新たなコストかければ、どんどんコスト高になる。CCUS付き製鉄プラントで直接バカみたいに高い水素還元製鉄やったり、CCUS付き発電所バカみたいに高い電力を作ってその電力で水素を作って水素還元製鉄やったりして、果たしてそのバカ高い高級鋼を今みたいに量産レベル自動車に使うのかね〜?という話。

anond:20221104170609

MIDREXとか知らなくて書いてないの?

それとも、あえて都合悪いか無視してるの?

事情通気取ってるけど、こういう基本抑えてないあたりが半可通ぽいぞ。



お前、多分このレス最後まで読んだら、二度とMIDREXの話を持ち出せなくなると思うぞ。だから覚悟して読めよ。

まずね、わかってて書いてるのかもしれないけど、今のMIDREX(MIDREX NG)はNG=natural gasと冠されている通り、LNGを使う還元製鉄プロセスなのね。「今の高炉法より2〜3割程度はCO2を減らせます」ってだけで、MIDREX NGではゼロカーボンスチールは作れないし、化石燃料消費もあるんだよ。

MIDREXの将来的な展望として、「グリーン水素供給が潤沢になれば、そのうち①部分的水素還元製鉄(MIDREX NGプロセス水素部分置換)ができるかもしれないし、もしかしたら②完全な水素還元製鉄(MIDREX H2プロセス)も実現できるかもしれないんですよ!」というファンタジー提唱されてるだけで、しかもこれって、俺が前に書いた水素還元製鉄のコスト課題の話から一歩も進んでないんだよ。以下の「水素製鉄の課題」についての指摘を読んでみればわかるでしょ。

https://www.kobelco.co.jp/technology-review/pdf/70_1/081-087.pdf

水素製鉄を実現させるための最大の課題は,グリーン水素コスト低減と供給の安定化である世界的に現在ほとんどの水素は水蒸気リフォーマを用いて化石燃料から製造されている。いっぽう,グリーン水素は水を電気分解することによって製造されており,その電気にはCO2フリー電気が利用されている。水の電気分解技術は新しいものではなく,電気分解槽に多くの開発が行われている。しかしながらどの技術を用いても大量の電力が必要で,電気分解槽の運転コストほとんどが電気である。したがって,現在価格天然ガスから置き換えるには電気料金が$0.01/kWh程度に低下しなければ経済的に成立しない。さらに,現在確立している技術をもってしても,DRプラント必要な量の水素供給することができない。最近欧州で発表されている最大のプロジェクトでは,100 MWアルカリ電気分解によって水素製造する計画がある。しかし,ミドレックスプラント 1 基に必要水素を賄うには,この 6~8 倍の規模が必要である。また,電気料金が$0.01/kWhになったとしても,化石燃料から製造した水素価格と同等になるためには,電気分解槽の設備費現在の1/3~1/4 にまで下げる必要がある。電気分解槽の大規模化に向けた開発も進められているが,大規模化設備コストを下げるとしても,経済的に成立するにはまだ時間を要しそうである

 水素が安定供給されて水素経済が実現するためには,水素製造コスト課題に加えて水素の貯蔵や輸送のような水素インフラ課題にも挑戦していく必要がある。

 水素経済実現のもう一つの課題は発電である。たとえば,スクラップとMIDREX H2製造したDRIを50:50で電気炉に供給することによって現在我が国の粗鋼量を生産することを考える。この場合,DRプラント必要な電力だけでも約25 GWグリーン電力,すなわち300,000 haのソーラーパネル,あるいは40,000ユニットの発電風車(7,500 haの敷地),もしくは20基の原子力発電所必要となる。このように膨大な量のグリーン電力が必要であり,これは国家レベルでの対応を要する課題と考える。



ここまで読んでどう思う? 今の日本に、衰退する鉄鋼産業の高級鋼製造のためだけに原発20基なり風力発電ユニット4万基を新設する力があると思うか? (これMIDREX親会社神戸製鋼技報から引用から、ここで指摘されてる課題にはお前もケチのつけようがないと思うけど、何かあるならどーぞ)

前にも書いた通り、「水素還元製鉄でグリーンスチールを製造して自動車を作ればいいんだからアルミメガキャスティングなんて駆逐できます」なんてシナリオは、今の技術水準では到底不可能レベルの莫大なグリーン電力の供給可能にならない限り、経済的に成立しないのよ。お前はアルミのことを「電力食い」って批判してたけど、そのお前が推してる水素還元製鉄によるグリーンスチール製造ってのは、そういうほとんどファンタジーみたいな条件が整わない限り絶対に成立しない、桁違い(それも1桁どころじゃない)の電力食いプロセスなんだよ。そして、もし仮にその条件が整う時代が来るとしたら、その時はアルミコモンメタルの中で一番安価金属素材になることもまた明白なわけ。

鋼材には鋼材にしかない特性、鋼材にしかできない仕事があって、そういう用途分野では、たとえグリーン化に伴うコスト増が進んでも、鋼材利用が廃れることはないだろう(特に建材がそうだ)。でも、現時点ですでに他のメタル材(端的にアルミ)と競合が始まっていて、LCAも対等に近づいてきてるような分野では、鋼材は今後コスト面でどんどん不利になっていく。アルミを押しのけてコスト優位性を回復できるグリーンシナリオ存在しないからだ。

グリーンな高級鋼材は、膨大なグリーン水素がないと作れない。

グリーン水素は、安価で潤沢なグリーン電力がないと作れない。

安価で潤沢なグリーン電力があれば、グリーンアルミを安く潤沢に作れる。

自動車製造もその分野のひとつだということ。どうだ、またまた勉強になっただろ? 

2022-07-18

宇宙船遭難した場合について考えているんだけど

酸素を作る最も効率の良い方法ってどれ?

1)過酸化水素

2)水の電気分解を行う

3)水草光合成で生じたものを集める。

 

3は量が少なそうだし

2は貴重な水か失われそう

 

宇宙船遭難したら酸素つくてなくて死ぬの…?

2022-05-29

ベース電源」という言葉を忘れてしまった結果www

ざっくり言うと

クソみたいな制度設計のせいで日本はもう安定供給ができる国じゃなくなりつつあるよ

この項目で言っていないこと

再エネの開発は不要

主力電源化する再エネ

 以前三菱商事系が洋上風力を総取りした件で軽く騒ぎになっていたが、日本で主力電源化しつつある太陽光、風力はコストが低下し、新規の開発案件日本だけでも目白押しとなっている。ただ、この中長期的なベース電源という言葉を忘れてしまって再エネ大正義の「限界費用ベースの電力市場趨勢のために、今まで2回(オイルショック東日本大震災しかたことのなかった電力使用制限令常態化してしまレベル日本の電力環境が本当にめちゃくちゃになりつつある現状は知られていない。太陽光、風力(まとめて変動性再エネ、以下VREと呼ぶ)の3つの特徴を踏まえた議論をしてみたい。

VREの特徴

1. 限界費用が0

2. 出力が不随意に変動する

3. 同期発電機を利用しないインバーター電源である

1. 限界費用が0

 VRE限界費用が0なので市場には0.01円で入札されており(この理論FITがある現状では額面通り受け取れないものの、概ねこの通りである理解していただいて構わない)、実際日本でも晴れた日の昼には約定価格が0.01円となっている。これはまさに燃料の投入が必要ないVRE恩恵と言え、この時間にはスポット市場では火力の電気コスト面で負けるため落札しない。しかし当然VREには発電しない時間がある(設備利用率は太陽光で最大15%、風力で20−30%出典)ため、夕方以降は火力が落札され、現在では資源価格の高騰もあり、15-20円/kWh程度での落札となっている。再エネ関連のトピックでは風力と太陽光は補完関係にあるという言葉ミスリードされることがよくあるが、蓄電ソリューションバックアップ電源なしでのVREのみでは設備稼働率の低さと稼働時間が集中しがちになるため電力を100%保証することは絶対にできない。そのため現在の電力システムへのVRE導入は火力による調整が前提になっている(蓄電池などによる蓄電ソリューションについては当然後で言及するが、少なくとも今の電力システムではあてにできない)。

 しかしながら昼間には火力の電気落札しないため、当然止めることになる。結果として火力発電設備利用率が低下するため、採算が悪化する。そのため、効率の悪い火力発電所は環境的側面というよりは経済的要請から廃止されていく。すなわち、現状のやり方でのVREの導入は火力の調整が前提なのに、VREのものによって火力が市場から追いやられているのである。 加えて、現在電源の大部分を所有する旧一般電気事業者JERA関西電力など大手地域電力系発電事業者のこと)は「自主的取り組み」として限界費用での玉出しを強制されているため、この傾向は当面続くと思われる。

 加えて言及しておかなければならないのが火力発電の燃料確保(主にLNG)における問題である。燃料には長期契約及びスポット調達の二つがある。長期契約比較長期間(およそ10単位LNGを買い続け、価格についても変動が大きくない。これは一見いいことに聞こえるが、LNG価格が低下したとき契約通りの値段で支払う必要があるため、近い将来VREの導入が多くなりLNG火力が落札せずにLNGを余らせた場合LNG転売することになる。しかしその場合(余るのだから安くしか売れないため)差損が発生することになるため、発電事業者としては長期で需要が見通せる場合のみ契約しようとするのは明白である。一方でLNGスポット依存すると、当然高騰した場合でも安定供給のためには買い続ける必要がある上に、いつも買えるとは限らないため、LNGスポットへの依存の増加が電力市場の高騰に結びつく。JERAカタールとの長期契約の終了のニュース記憶に新しい(JERA社長、カタールとの大型LNG契約は更新せず-年末に終了へ - Bloomberg)が、現状の電力市場取引システムは発電事業者スポットへの依存を招く構造になっているため、日本LNGの長期契約が次々と失われている現状がある。これは欧州の脱ロシアの流れの中においてはLNGの安定供給を危うくすると同時に余計な国富流出を招くため、政府として対処すべき問題である付言しておく(参考:https://www.meti.go.jp/shingikai/enecho/shigen_nenryo/sekiyu_gas/pdf/018_03_00.pdf)。

 なお、火力発電設備撤廃に伴う電源不足という現在課題は既に共有されており、2024年から容量市場が導入され、電源容量(kW)に価値をつけて取引ができるようになった。発電側としては資金回収の目処がつくため発電所の新設のハードルが下がる、と思われていたが、新電力配慮したい政治的思惑もあって現在の水準は既設発電所の維持はできるが新設は難しい水準となってしまっている。加えて全く語られないので言及しておくが、九州電力管内においては初年度の2024年から既に不調な結果に終わり、供給信頼度が低い結果となっている(ざっくりいうと、九州電力管内は非落札電源はないので「物理的に」電源が不足する)。一体どうするのだろうか?2025年以降の電源容量の不足は全国的に波及しそうで、中長期的に日本国内での電源は決定的に不足している(参考:https://www.occto.or.jp/iinkai/youryou/kentoukai/2020/files/youryou_kentoukai_29_04.pdf)。

2. 出力が不随意に変動する

 これは広く知られていると思うが、稼働できる時間帯の中でも風はいつも吹かないし、太陽は雲に隠れたりする。ただ、その変動にもスケールがあり、数分ー数時間程度の短期間の変動から気候の季節変化に伴う数ヶ月程度の長期間の変動がある(冬に電力が不足しつつある現状を思い出してほしい)。短期間の変動はご存じのとおり蓄電池解決策になる上に、スポット価格が高くなる他のVREが発電しない時間帯に売電のタイミングをずらせるため、発電事業者には収入の増加も見込めるメリットがある。加えて蓄電池VREでも既に価格競争力を持ちつつあり、詳しくは言及しないが今年から始まったFIP制度がそれのインセンティブになりうると期待されており、要注目であるのだが、今のシステム設計では、あえて蓄電池コスト負担しようとする者はいないだろう。

 一方、である長期間の変動は一体どうするのであろうか?残念ながら蓄電池などの既存の蓄電ソリューションでは対応できない上に、将来的にも難しいため、やはり火力発電によるバックアップ必要かつ前提になるのであるが、既に言及したようにこの有様なのでどうしようもないのである。残念。再エネで作った水素火力発電、という声も聞こえてきそうだが、電気で作った水素を燃やして電気をつくるというこの二度手間、つまり現状の火力発電の熱効率が高くても40%程度(高位発熱基準)で電気分解で90%とするなら35%程度のエネルギーしか利用できないことを考えると発電に使うより車を走らせるべきでコスト面やエネルギー効率観点からで圧倒的に不利になる。それならブルー水素の方が良い気もするが、再エネで水素を作れる時代になればわざわざ褐炭だの天然ガスだのの採掘ファイナンスがつくわけないので非現実的。ということで詰んでいます。現状の解決策はありません。どうするんでしょう。再エネのコストが低下しつつあるのは間違いないのだが、それはあくまで発電事業者にとってのコストであり、VREを主電源化するにあたっては社会全体で追加で負担しなければならないコストが発生することはよく理解していただきたい。

3. インバーター電源である

 インバーターとは直流交流に変換する素子のこと。VRE交流発電機は直接利用せず一旦直流で発電してから交流に変えたのちに電力網に乗せるため、従来の電源(火力、水力、原子力)で利用される同期発電機という一定の回転数で稼働させる発電機は利用しない。昼間に晴れた時間帯には以前太陽光の出力制御が行われた四国電力管内の例で言うと6割程度がこのインバータ電源が占めていた。実はこの際に語られないが非常に大きな問題が発生する。と言うのも、インバーター電源には「慣性力が存在しない」のである。?となった方もいると思うので、大縄跳びに喩えてみよう。大縄跳びを飛ぶときは紐に合わせるのではなく、一般に人の声にタイミングを合わせて跳ぶ。このうち、同期発電機は声を出している人、インバータ電源はその声を聞いて飛ぶタイミングを合わせている人である。縄跳びがちょうど周波数に相当し、声が慣性力に相当すると考えてもらって良い。先ほどの晴れた昼間の例で言うならば、昼間は火力が系統から退出してしまっているので、声だしのできる人が減ってしまっている。そのため、仮に残った数少ない声だしのできる人が急に捻挫を起こして縄跳びから退出してしまった場合、声でタイミングを合わせていたインバータ電源は急に声が聞こえなくなるのでジャンプタイミングがわからなくなり、大縄跳びが成立しなくなる(周波数の乱れが起こり、UFRの作動による停電)。お分かりいただけるだろうか。すなわち系統を維持するためには一定割合の同期発電機や同期調相機といった慣性力確保のための仕組みが必要なのだが、現状のVREの導入の仕方では不可能なのである(よく話題になる太陽光発電の出力抑制もこのインバーター電源の割合を抑える目的も持っている)。以前の3/18の地震の際に火力発電所の停止の影響で関東に大規模な停電が起こったが、あれは仮に昼間であった場合、脱落しているのはほとんど火力発電=同期発電機だったため、インバータ電源だらけになってしま周波数の乱れが深刻になり、停電する地域がより拡大していた可能性が高い。復旧の際には系統投入は同期発電機から順に行っていくが、VREほとんどは分散型電源のため司令所で気軽にオンオフもできないため、逆に復旧にかなり時間を要する可能性も高い。つまり野放図なVREの導入はその分散型電源としてのイメージとは裏腹に電力系統災害時のレジリエンスをも低下させてしまうのである。昼間に地震が起こらないことを祈るばかりである

 この対策としては、慣性力をもつインバーターがまだ技術的に開発されていない上に、すでに導入されている太陽光発電の規模を考慮すれば、現実的選択肢としてはフライホイールや同期調相機としての同期発電機タービンのから回しなどなのであるが、このような施策を行えるのは大手電力のみであり、自由化で体力を奪われている彼らに期待するのは難しいだろう。このままでは晴れた日は出力抑制が続出するのに曇れば火力がフル稼働というあまりにも不健全な電力構成となってしまう。なお、送電線の強化は出力抑制問題と絡めて語られるが、この問題対策としてはあまりコスパが良くない。と言うのもJEPXスポット市場をご覧になればわかるが、例えば東京電力管内で晴れている時には隣の東北電力管内でも晴れている場合が多く、その場合にはどちらの場合でもインバータ電源の割合が高いため相互接続しても同期発電機の脱落に備えると言う観点からは(もちろん役立つこともあるが、)役立たないことも多く、この問題解決策として優先度は低い。ちなみに、この件に関しては日本風力開発傘下のエネルギー戦略研究所安田陽氏のコラムNo.275 慣性問題の基礎知識と最新動向 - 京都大学大学院 経済学研究科 再生可能エネルギー経済学講座)やこれ が参考になる。

コスト負担制度設計

 VREは確かに素晴らしい特性を持つが、裏腹にその主電源化には発電事業者ではなく電力系統大手電力会社の側で新たな投資必要となる。そのため、発電事業者から見たコスト(発電コスト)は「安い(≦10\/kWh)」のだが、電力系統全体で負担するコスト統合コスト)は「高い(~20\/kWh)」(ちなみにこれは電力卸市場VRE大規模導入をおこなっている国はどこでも直面している問題であり、Death Spiralなどの言葉検索していただくと良いと思う)。以前統合コストを論じたエントリ太陽光に火力のコストが含まれていることを批判するブコメが多くみられた(例えば、これ)が、この増田で納得いただけただろうか。筆者自身としてVREの導入は避けられないと思っているし、また賛成でもあるが、責任ある立場の人々からこれらの問題解決しようという風潮があまり見られないので非常に心配している。また、そもそもで言うならばこれらの問題の根源はVREではなく制度設計であり、限界費用の考え方のみで、VREの導入と電力市場の安定を両立させようとするのはどう考えても最初から無理だったと思う。(現在の最もあり得る)結果として安定供給担保されなくなることと燃料費高騰という二つのツケを消費者負担させるようでは現在の小売システムや脱炭素理解を得るのは難しくなるだろう。しか最も高い代償を払うのはエネルギー支出割合が大きくなり、家に太陽光パネルを設置できない低所得者層であるSDGsとは一体何だったのか(「10. 人や国の不平等をなくそう」ってあるんだが)。 再エネ議連の皆様には猛省をうながしたいところである

まとめ

2022-04-11

「再エネの主電源化」「小売自由化」を達成した日本では「安定供給」は望めない

このエントリで言っていないこと

  • 再エネはこれ以上導入しないで良い

用語定義

「再エネの主電源化」: 太陽光洋上及び陸上風力の変動性再エネ(以下VRE)を主力電源にすることで、電力分野においての低炭素化の達成。バックアップ電源としての化石エネルギーの利用は排除しない(調整力の問題から100%炭素不可能のため、後で理由説明する)

注意:地熱、水力は開発余地およびファイナンス問題(詳細は調べていただきたいが、資源があることは営利目的での開発が可能であることを意味しない。ネットに出てくる(中小)水力、地熱トピック資源にの言及し、ファイナンス面を無視したものが多く、実際の開発に踏み込んで議論していないものが多いので注意)から大幅な開発は期待できず、目標には入れない。

小売自由化」:全ての消費者は、参入障壁の低い電力市場に参加した小売業者から自由選択して電気を購入する。競争原理により消費者低価格な電力を選択、もしくは証書つき電力を購入することにより非化石価値などの付加価値も購入できる。市場への入札は基本的に電力の限界費用で行われる(現行ルール)。これは達成済み。

「安定供給」:化石燃料市場の動向および天候や気温の条件に関わらず、発電サイドの問題(燃料制約、電源不足や天候不順など)での停電は起こさない(注意:配送電に起因する停電災害などの理由から0にはできないので、ここの定義には含まない)

大手電力:自前の大規模電源を有する電力会社JERA関西電力などといった旧一般電気事業者ENEOS東京ガスなども含む)

新電力:大部分を市場で電力を購入して消費者供給する小売事業者

このエントリで言いたいこと

「再エネの主電源化」「小売自由化」というものを両立する場合、少なくともこの先10年ー50年の短中期においては「安定供給」を日本においては完全に達成するのは不可能であるということ。

理由説明していく。ただし「再エネの主電源化」を達成しない選択肢は国際的かつ政治的に今後取り得ないので、「安定供給」と「小売自由化」をどの程度のバランスで守るかということを考える材料提供したいと考えている。まずは今の方向性を維持する場合を考える。

「再エネの主電源化」「小売自由化」を完全達成した場合現在日本が近づいているもの

達成にあたって絶対必要なこと(かっこは筆者による実現可能性の予想)

- VREインバータ電源(直流交流への変換を伴う)のため電力系統に大規模に導入すると電力系統慣性力を失い、火力、水力、原子力などの同期発電機脱落時の大規模停電リスクを高めるため、蓄電設備がない場合は出力抑制必要

- 付言するが、蓄電池VREも近年では価格競争力を持ち始めている(ただしあえて蓄電池コスト負担しようとする者はいないだろう)。また2022年からFIP制度というのが始まり、再エネを市場価格プレミアムで買い取る制度ができる(インバランスにはペナルティも課される)。この場合では再エネが発電できない、電力価格の高い時間帯に売電するインセンティブを生むため、アグリゲータFIP対象の発電事業者蓄電池コスト負担するモチベーションにつながる。一方で資源価格が上がっている現状で蓄電池資本費を回収できるかは不透明

- この二つは国を超えたレベルの広域な電力系統存在しない日本特に顕在化する。

実現できればいいが、期待できない・目標の達成には資さないこと

- ネガワット、DRは何れも短期間の電力の過不足への対応技術のためいずれも一日から1ヶ月の長期間VREの変動には対応できない

- あくまで安定供給に向けた金銭的なインセンティブしかなく、100%保障を行えるメカニズムにはならない

- ただし、出力抑制が起こるような先週の土日の東北電力四国電力管内の例には電力を活用する観点から重要

- VREが安い時間帯に水素を作ってkwが不足する場合火力発電の燃料とするという発想

- 電気分解で90%、コンバインドサイクルを利用する場合でも高位発熱基準で熱効率40%程度が限界なので全体として見た時に結果として3割ー4割程度のエネルギーしか利用できないため、ファイナンスの面から達成が難しい

- 発電に利用するならCCS付き水素を利用する方が現実的だが、将来的なタクソノミーを考えると採掘関係する資産座礁資産になる可能性が高いという筆者の予想

結果として起こること

- 加えて重要なのが、火力発電の燃料、特にLNG大手電力にとって長期契約するインセンティブが失われるため(長期による電力需要を見通せず、余った場合にはLNG転売損を招く)スポット調達がメインになるが、スポットは割高のため、VREが使えない時間帯のさらなる電力価格高騰の常態化を招く

- スポットは常に入手できるとは限らず、加えて無駄国富流出の要因になり、経済安全保障観点から政府も手を打つべ問題

- 結局VRE統合コスト2030年でも原子力に比べて割高なのはこれらの理由による

- 2024年度より容量市場が設置され、電源(kW)を取引できるようになった(すでに取引は開始されている)が、様々な理由から現在市場価格では既存設備は維持するのは可能(難しいものも多いが)だが新設するには安い値段に落ち着いてしまっている。結果的現在市場設計では中長期的な将来の容量を担保できない。

- 既に2024年の九州電力管内の落札結果は供給信頼度が低く、管内の電源容量不足を示唆している。

現状の継続では「安定供給」が犠牲になることに加えて、VRE大規模導入での電力の脱炭素化は不可能になる

少しでもシナリオ改善するには

- 発電設備資本費を市場負担させるシステム必要ではあるが、新電力からすればメリットが皆無なので難航するのは目に見えている

- 容量市場についても経過措置取引価格が下がる仕組みになったこからほぼ期待できない

- 現状では再エネの主電源化は遠い目標なので脱炭素および電力価格の安定を目指すなら活用せざるを得ない

- 電力の完全脱炭素化を達成するには将来的にはSMRなどの調整力を備えた原子力発電所が必要不可欠だが...

- 利点

- 同期発電機であり大規模電源でもあるため電源として単純に優れている

- 限界費用は再エネと同様0、福島での事故を加味してもまだ既存原発の再稼働コストは安い

- 燃料費は発電コストの15%程度、かつそのうち加工コストが半分程度なのでウラン価格費用に占める割合が低く、経済安全保障資する

- 欠点

- 既存原発に調整力を担わせるのは経済的理由から難しい(技術的には可能だが...)

- 事故が起こった時の恐怖感から賛否が分かれ、利用のための政治コストが高い上に政治家はそれを払おうとしないので期待できない

- 安全対策及び特重施設設置の問題から東日本大震災から止まっている原発については迅速な再稼働は期待できない

まとめ

1. 価格面で起こること

 現状の市場システムでは燃料調達スポット市場への依存を促す仕組みになっており、資源価格の上昇がより厳しい形で市場に跳ね返る。そしてそれは最終的に一般消費者負担させられる構図が出来上がっている。特にエネルギー価格は逆進性があるため、低所得者への支援必要不可欠。

2. 脱炭素面で起こること

 VREの導入はこれからも進んでいくだろうが、主力電源化を進めるためにはVREの変動をカバーできるシステム必要蓄電池は有力な候補だが、主力電源化に必要レベル蓄電池導入のコストを誰が負担するのか決まっていないため、不透明と言わざるを得ない。このままでは長期的な変動はともかくとして、短期的な天候の変化にも対応できず、春や夏でも晴れた日には出力抑制常態化するのに夜間や荒天の日には火力発電所がフル稼働する日常が迫っており、電力の脱炭素化は遥か遠い目標となる。

3. 安定供給面で起こること

 中長期的なバックアップ電源を保障するシステムが今の日本には存在しない。現状が進行すると3/22のような需給逼迫警報特に冬の時期に日常化しうる危険性がある。小売事業者に適切に発電設備資本費を負担させる仕組みおよび長期的な発電事業者収入保証する仕組みが必要。安定供給破綻に近づいている。

と、ここまで書いてきたが結局再エネの主電源化を妨げているのは制度設計のまずさとしか言いようがない。FITは再エネ導入に大きな役割を果たしたが、野放図な開発を招き、加えて電力系統不安定さを招いた。パネル設置者が固定価格で買い取ってもらえる一方でそれによって増大した再エネ賦課金と安定供給維持のコストは広く国民負担するハメになるのでまさに外部不経済しか言いようがない。理念が間違っているわけではないのだが、安定供給と再エネの柔軟性確保に誰が責任を持つのかはっきりすべきだった。つまりこれらは政治責任であり、政治コストを払わなかった政治家の責任である。最も現実的選択肢としての(特重施設設置期限の延長による)原発再稼働も政治コストの高さから誰もやろうとしない。票にならないことを政治家がやりたがらないのはわかるが政治家の失策コスト国民が払い続ける現状はおかしい。参院選の後からでも日本の電力の未来責任あるビジョンを示す政治家が現れることを期待したい。

anond:20220402032958

2022-04-10

anond:20220410130431

水素以外に電気分解系で作れるやつがあるといいんだよな

2022-01-06

anond:20220106083918

水に溶かして電気分解すれば電極付近で塩とわさびに分かれると思うので別々に使ったらどう

2021-10-18

anond:20211001010145

原発でよい。代替エネルギーも補完的には使うと思うが主力は結局原子力しかない。

(人が住んでいない広い土地がある国で原発で発電して電気分解した水素を輸入し、その水素を使って発電するのも含む)

水素を使うにしても、自家用車のような小型のサイズの車は直接使うより、大規模な施設で発電した電気を使う方が良い。

2021-10-17

純度高い水素取り出す大規模実験成功光触媒」の働き活用

(゚∀゚)キタコレ!!

これってつまり動力源を完全に石油フリーカーボンフリーで作れるってことよな

化石生物をいっさい殺さな太陽光だけで動く、

水素エンジンMT車を買えるようになるのは10年以内の公算が高くなってきた

クワク感がヤバい

2021年10月17日 7時11

太陽の光を当てることで水を水素酸素に分解する「光触媒」の働きを活用し、100平方メートルの規模で純度の高い水素安全に取り出す実験に、東京大学などの研究チームが成功しました。広範囲での実験過去に例がないということで、次世代エネルギーとして注目される水素を大量かつ低コストで作る技術につながる成果として期待されます

実験成功したのは、NEDO新エネルギー・産業技術総合開発機構東京大学信州大学などの研究チームで、ことし8月国際的科学雑誌ネイチャー」で発表しました。

研究チームは、太陽の光を吸収して物質化学反応を促進させる「光触媒」の働きを活用して水を水素酸素に分解する物質を使った技術開発に取り組んでいます

今回試したのは、この物質を付着させたパネルを屋外に設けて水を注ぎ、太陽の光を受けて発生した水素酸素が混ざった気体から穴の空いた膜を通すことで水素だけを抽出する実験で、おととしから2年ほど実施してきました。

水素は、酸素と結びついて火に触れると燃焼したり爆発したりするため、取り扱いが難しい気体ですが、実験の結果、発生した水素の7割以上をおよそ94%という高い純度で安全に取り出せたということです。

研究チームによりますと、100平方メートルの規模で水素の取り出しに成功したのは世界で初めてだとしていて、水素を大量かつ低コストで作る技術につながると期待できる一方、さら効率よく取り出すための新たな物質の開発が実用化への課題だとしています

研究チームのメンバーで、東京大学の堂免一成特別教授は「こうした大規模な実験は爆発の危険性があるため世界でも例がなかったが、安全に取り扱える方法を考え、装置を開発した。早く実用化して、安い水素を大量に世の中に提供したい」と話しています

光触媒とは

光触媒」とは、光を当てると周りの物質化学反応を促進させる物質です。

代表的物質としては、白い塗料化粧品などに使われる「酸化チタン」がよく知られています

紫外線が当たると、水を水素酸素に分解するメカニズム発見されて以降、「酸化チタン」は有機物の分解にも応用され、汚れや臭いの除去のほか、抗菌作用などを得られることから光触媒」の技術日常生活にも幅広く活用されています

水素の特徴は

水素化石燃料と異なり、燃やしても二酸化炭素排出しません。

また、水を「電気分解」することで水素を取り出すことができます

こうした特徴から「脱炭素化」につながるほか、余剰の電力が生じた場合にも、「電気分解」によって水から水素を取り出す技術確立されれば、余った電力を水素に変換して蓄えることも可能になります

一方で、水素天然ガスなどと比べて生産コストが高いのが課題で、経済産業省では「脱炭素社会」の実現を目指す2050年までに水素価格技術革新などによって現在の5分の1以下にする目標を掲げています

水素製造」の現状は

世界供給される水素の大半は天然ガスなどの化石燃料から取り出す方法製造されています

ただ、この方法では製造過程二酸化炭素も発生するため、「脱炭素化」に向けては、回収して地中に埋める技術などと組み合わせる必要があります

このため、将来的には、再生可能エネルギーを使って二酸化炭素を出さずに水素製造する技術重要です。

現在、有力視されているのが水を「電気分解」して水素を取り出す「水電解装置」の開発で、国内外技術開発が進められています

2021-08-30

anond:20210827192457

続き楽しみにしてます

単純に蓄電技術として比較した場合Lib等に比べて水素の劣る点が「変換ロスが多い」なんだけど、ロスの大部分は電気水素の部分で発生するから水素状態からそのまま消費するのと発電して消費するのを比較した場合は、水素欠点殆どないと言えるのがポイント

ここなんですが、自分認識だと電気分解プロセスは吸熱反応、燃料電池プロセス発熱反応で、後段の「水素電気」のほうがエネルギーロスが多いと思ってました(PEM電解とか高温水蒸気電解は、吸熱反応を利用しているか効率がよい)。

増田でも書いたけど、電気と一緒に発熱コジェネ的に利用できればエネルギー効率は80%程度、発熱を捨てて純粋電気エネルギーとして取り出せるエネルギーで見ると効率50%程度で、今後技術革新を進めて60%を目指す、という感じだと思います

この効率は利用する化学反応自体に拘束されており(その意味では今でも十分高率だと言える)、今後の劇的な向上は見込めず、そうなると純粋な蓄電システムとして普及させるのは厳しいんじゃないかと思ったりします。昼間の余剰電気水素にしてその日の夜に売るだけでも6割以下に目減りしてしまうわけですから、今の卸電力取引市場の仕組みだと、この技術betする余地は低い(メリットオーダーで見た場合他の方法で発電または蓄電された電気のほうが割安になる可能性が高い)のではないかと…。

具体的に他の蓄電システム比較すると、揚水ダム発電だと電気位置エネルギーに変えて、後で電気に戻したときのラウンドトリップエネルギー効率が70%程度。レドックスフロー電池も同じく約70%。最近複数ベンチャーが取り組んでいる重力利用型蓄電(タワーや縦杭にコンクリートブロックなどの重量物を吊して上げたり下ろしたりして蓄電/放電する)だと、設置コスト管理コストも安く、施設寿命は35〜50年、ラウンドトリップ効率揚水発電と違って流体摩擦損失がないので80-85%と、これが案外本命かなと思ってます。固定電池系は、LiBだと95%ぐらい出るけどLCAが悪すぎるので、非コバルト・非リチウム系で良いものが出てくるのを待つ状態かと思います

水素エネルギーキャリアとしての性質活用せず、蓄電技術としてやっていくとなると、競合システムに対する優位性が乏しいなあと感じます。廃熱の二次利用ができるところならワンチャンあるけど、季節問わずに廃熱を利用できるロケーションとなると、はたしてそんな都合のいい場所があるかいね?と思ってしまうわけです。製鉄所の溶鉱炉を電炉化するぐらいでしょうか。

2021-08-27

anond:20210827130632

「時刻や季節での発電量変化が大きい変動性再エネ系統の蓄電技術として、水素を使おう」というのは、まあわからんでもないんだよね。

でもその場合、そのグリーン水素製造・貯蔵装置は、その再エネ設備系統連系で繋がってるどこかの場所に設置して、その場所電気水素にして貯蔵したり、夜間に水素から電気に戻して販売したりするわけでしょ。つまり、作ったグリーン水素タンク車とか高圧ボンベに詰め替えて、どっかに持ってって、そこで利用したりはしない。

で、もしそういう「発電設備の変動を補完する蓄電設備」として「電気分解による水素貯蔵+燃料電池による発電」という用途が主流になったとして、それって果たして水素社会」って言えるのかね〜? とも思うわけです。そのとき水素は、単にバッテリダムと同じスタンドアロンの蓄電ソリューションとしての役割果たしてるだけで、エネルギーキャリアとしては使ってないわけだから

仮に再エネの蓄電技術の主流が(テスラ北海道に導入したような)価格性能比の高いLFP蓄電池になったとして、人はそれを「蓄電池社会」とは言わないわけでしょ。あるいは電力取引市場の活発化で、日本中の揚水ダムが夜間の再エネ電力のプールとして機能するようになったとして、われわれがそれを「揚水ダム社会」と呼ぶこともない。

同じように、電気水素を作ったり、水素電気を作ったりする蓄電システム社会の一部にインストールされるだけでは、我々はそれを「水素社会」とは言わないと思うんだよね。やっぱり「水素社会」という構想の根底にあるのは、水素が(もしくは水素から派生的に作られたアンモニアや、メタネーションで生成されたメタンが)、今のLNG石油のように、社会の隅々までエネルギーキャリアとして物理的に流通するというイメージなわけで、この部分---特にFCV水素エンジンによるモビリティ---が未完のままなら、どんだけ水素蓄電技術が普及しても「ついに水素社会が到来した!」と思う人はほとんどいないんじゃないかな。

あと思ったんだけど、燃料電池で電力を取り出すやり方だと、電気と一緒にかなりの熱が発生するから燃料電池発電効率50%程度、熱も一緒に利用してトータルで80%)、その廃熱をコジェネ的に利用できる場所でないとエネルギーロスが大きいよね。たとえば太陽光発電所の隣に併設してそこで水素化・電気化やったりしても、廃熱はすべて自然界に捨てることになるわけで。そうすると、廃熱を効率的に利用できるような特殊場所市街地での施設空調とか、熱反応を使う工場製造ラインとか)しか効率的エネルギーを使えるロケーションがないような気がするなあ。

2021-08-20

どうも「水素社会」はうまくいかない気がするな

「MIRAIには未来はない」理由を、理系のはてなーにわかるように書く の続きで、バストラックFCV化の可能性について書こうとしたんだけど、そこからだんだん水素社会自体について考え始めてしまったのでダダ漏れで書きます

バストラックFCV化はまだ目があるのか

増田ブコメで「バストラック分野についてはEVよりFCVのほうが優位なのでは?」という指摘を何件かもらった。技術的には概ねその通りだと思う。前増田で挙げたFCVの諸課題は、(2代目MIRAIが実際にそうしたように)車全体のサイズを大きくするほど希釈・軽減されていく性質がある。一方でEVのほうは、車が大型化し、求められる航続距離と出力が大きくなるほど必要電気容量も増え、それに伴ってバッテリセル部の大型化・重量増・充電時間の長時間化という問題が重くのしかかってくる。

からFCV自家用車スケールに展開しようとすると技術的に無理が生じてくるし(たとえば、軽自動車サイズ実用的な航続距離を持つFCVを作るのはあまり現実的でない)、逆にEVを大型商用車スケールに展開しようとすると実用性の面で問題が生じてくる(高価格・高重量で給電にも時間がかかる)。言い換えれば、EVFCVは、その特性が活かせるスイートスポットが違っているEV二輪車自家用車レベルに向いていて、それより上へのスケールアップには課題がある。FCVは大型商用車用途なら一定の強みを発揮できる可能性があるけど、自家用車以下へのスケールダウンには向いていない。だから「乗用/大型商用で線を引いて棲み分けする」という選択肢は確かにありうると思うし、当のトラックメーカー側も、日野いすゞダイムラーボルボあたりは現状はEVFCVの両ベット戦略で進んでて、しかFCVのほうが将来有望だと考えているように見える。

※大型商用車EV化については、バストラックバッテリセル部がモジュール化されて、トラック向けの幹線ガソリンスタンドのような「バッテリ換装ステーション」でメーカーや車種を問わず換装課金される仕組みが整う可能性もあるんだけど(外付け換装型の商用EV自体日本では川崎市のゴミ収集車などで中国では大型トラックで導入されている)、かなり大規模なインフラ変革になるので、バストラック業界全体が早急にこの方向でまとまるとは考えにくい。

一方で、実際に大型商用車EVFCVのどちらに寄っていくかは、単純に技術的・コスト的な優位性だけでなく、社会行政がモビリティの分野で「EVベース電気社会」と「FCVベース水素社会」のどちらがリアル選択肢と考えるかによって大きく左右されるかもしれない。個人的には、大型商用FCV技術的にはEVに対して現状優位にあるけれど、この「社会的なリアリティ」という点から見ると、だんだん厳しいことになっていくような気もする。国と資エネ庁は、モビリティ分野に留まらず我々の社会全体に水素というエネルギー源が浸透する「水素社会」という壮大な絵図を描いて、自家用FCVをその中核的存在位置づけてきたわけだけど、自家用FCVの将来が怪しくなってきた今、「水素社会」というエコシステム全体にも、それが翻って大型商用FCV未来にも、陰が差し始めているんじゃないかと。

水素社会」の夢と現実

資エネ庁の水素社会の見取図には、実現しつつある「水素社会」の具体例として、

エネファーム

業務産業燃料電池

水素ガスタービン

水素発電実証設備

燃料電池自家用FCVフォークリフトバストラック

が掲げられている。このうち①②は、ガス網を経由して送られた天然ガスを改質して水素を作り、さらにそこから電力と熱を取り出す技術だ。この反応過程水素が介在していることで、「水素社会」の尖兵みたいな扱われ方をしてるけど、改質段階で結局CO2排出してるので、実は全然カーボンニュートラルではない。天然ガスの持つ反応ポテンシャルを余すことなく高効率に使ってるだけ。

③④は、水素を何らかのインフラ経由で地上の固定設備輸送し、そこで電気を取り出す技術だ。カーボンニュートラル水素には、主に「グリーン水素」(再エネの電気で水を電気分解して作る水素)と「ブルー水素」(天然ガスなどを改質して水素を取り出し、同時に発生するCO2はCCSで地下や海底に圧入貯留する方法生産される水素)の2種類があるけど、グリーン水素で③④をやるのは「電気製造した水素物理的に運んで、その先で水素を使ってまた電気(と熱)を作ること」に等しい。そんなエネルギーロスを繰り返すぐらいなら最初から送電網で送った電気を使えばいいわけで、基本的に③④はブルー水素しかやる意味がない。

ところが日本政府が「水素社会」実現時期のベンチマークとしている2050年にはブルー水素はグリーン水素よりコスト高になるとの予想も、いや2030年にはそうなるという予想もある。そうなった時点で、③④は「電気より割高なエネルギー源」を使って電気を作る、社会的に無意味アプリケーションになってしまう。

そう考えると、実は「水素社会」のビジョンって、石油・ガスなどの化石燃料エネルギー関連産業と、その産業に紐づく重電企業商社・省庁が、既存資源技術インフラを使い廻しつつ「我々もカーボンニュートラルできます! やります!」つって延命するために目いっぱい膨らませてみた風船なんじゃないか、という気がしてきた。

エネルギー企業はこれまで通りLNG石油を掘り、それを改質し、ブルー水素を取り出し、CCSでCO2を地中に送り込む。商社既存エネルギーと同じようにそのブルー水素を輸入する。重電企業既存LNG火発のガスタービン技術を使って、ブルー水素で発電する。ガス会社既存都市ガス網やプロパンガス供給網への水素混入度を高め、情勢を見つつ緩やかに水素ガス供給網に転換していく。こういう、既存産業構造がそっくりそのまま生き残れる「ありき」の姿から逆算して「水素社会」のビジョンが立ち上げられ、そこに①②③④が繰り込まれてるんじゃなかろうか、と思ってしまった。

このパンパンに膨らんだビジョンを針でつつくと、「水素社会」の絵図の中には⑤の燃料電池自家用FCVフォークリフトバストラックけが残る。確かに設備送電網を結線して、そのまま電気を利用する」ことができない分野=非結線のモビリティ自動車気動車船舶航空機など)なら、エネルギーを一旦「水素」という物体に変えて持ち運ぶ必然性が出てくるし、コストや容量の面でも「送電から無際限に送られる電力」ではなく「有限のバッテリに蓄電される電力」と競うことになり、水素陣営から見た競争条件はだいぶマシになる。でも前増田でも書いた通り、そのモビリティ市場の核となるはずだった自家用FCVは、技術的にだんだん死に筋に入りつつある。

…と考えているうちに、自分は大型商用FCVの将来にもそれほど明るい見通しが持てなくなってきた。「水素社会」の現実的な利用分野が大型商用FCVぐらいしかないとしたら、我々の社会はそれでも「水素社会路線を推進するんだろうか。そのときFCV向けの高純度水素現実的価格流通するんだろうか。もしかしたら大型商用FCVEVに対する技術的優位性を発揮して、LPGCNGバス/トラック/タクシーみたいに(一般人には馴染みが薄いけど、社会を支える縁の下の力持ち的な存在として)地道に普及していくのかもしれない。あるいは、この分野のためだけに「水素インフラ」を全国的に整備するコスト社会負担できず、大型商用車分野でもバッテリ換装や超急速充電などを駆使してEV化が進んでいくのかもしれない。どっちにしても、いま官民が推し進めている「水素社会」の壮大なビジョンとはだいぶかけ離れた、なんだかシケた未来像が思い浮かんでしまった。

モビリティ分野の他に、「水素社会」の普及・浸透が見込めるような「これだ!」って新分野はあるんですかね〜。水素焼肉? 速い水素乾太くん?

2021-06-06

anond:20210606114955

情報どうもです!みつかりました

新潟大、世界最小エネルギーで水の電気分解成功

宇都宮

2021年6月2日 17:54

Tweet

リスト

世界高水準の酸素発生電極との過電圧比較。赤が今回開発した電極

 新潟大学自然科学系による研究グループは、超低過電圧で水を分解する高活性酸素発生触媒を開発し、世界最小のエネルギーで水を電解することに成功したと発表した。

 化石燃料に代わる新たなエネルギー源の1つとして水素が期待される中で、水の電気分解による水素生成技術研究も進められている。しかし、電気分解を行なうための電解質水溶液である水電解セルでは、理論電圧である1.23Vに加えて、酸素発生電極と水素発生電極への過電圧必要で、前者は現状では300mV程度と高いのが課題だった。

 研究グループでは、多孔性ニッケル基板とチオ尿素をともに焼成すると、窒化炭素に包まれた硫化ニッケルナノワイヤーが同基板上に析出することを発見酸素発生電極として利用することで、32mVの超低過電圧での水の電解に成功した。

 分析によれば、硫化ニッケルナノワイヤーと電解質水溶液の界面に、触媒活性サイトとなるニッケル酸化物層が形成され、基板から効率的電子輸送が行なえたことが要因だとしており、高水準な電極と比べても大幅に低い電圧での電解が可能だという。

 同グループでは、今回の結果が高効率水素生成技術の実現につながるとしており、今後はこの水電解セル太陽電池による、実用的な太陽光水素生成システムの開発を目指すとしている。

編集部おすすめ記事

2021-05-26

anond:20210526154948

水道水飲めるようにしたほうが早いのでは

適当メコン川かに電極突っ込んで電気分解したらどう

ログイン ユーザー登録
ようこそ ゲスト さん