はてなキーワード: 素数とは
エウクレイデーッス
169って13の二乗なんですね、13に13を掛けたら169になるってことです。算数の話ですね。
とはいえ冪乗だ素数だなんだの話をしだすと私の中の学の無い部分が「そんな賢そうな話しないでよ!」と震えてしまうのでここら辺にしておきます
そういえば、大事なことだから二回言ったって奴は単なる誤植を言い訳するのに使われた言葉だと私は思ってたんですけれども
なんかコピペの仕方を間違ってもう一回同じの貼った時の言い訳に使ってるものがほとんどだったので、勘違いしたのかもしれません
まぁ大事なことは言われたまま、感じたままにするんじゃなくてちゃんと調べて確認するほうが大事なんだなぁって思います
その内容を信じるか信じないかはその作業が終わってからするものとして
2の段 さっきの2倍だ。つよい。
4の段 2の段の2倍。そんなペースで増えていいのか。
5の段 5!その存在感!切りの良さ!5✕5の完成度はまさに中ボス。いずれ味方になり主人公を鍛えるだろう。
6の段 強い。6✕6で36になるあたり3の兄キャラと言える。
7の段 強さ華麗さを併せ持つ。7✕3で奇数、7✕4で偶数、7✕7で禍々しく鋭い素数を放つ比類なき個性。
8の段 パワー系最高峰。「はちに16」「はっぱ64」すべてタテヨコ綺麗に割り切れるのにただただ厚く力強い。
9の段 これまで倒したすべての数を最高の係数9で強化し襲いかかる強大な存在。
「九九、八十一」。八十一、つまり9✕9を意味するのみならず、1✕1から9✕9までの長い戦いの数でもあるこの数字をもってドラマは終わる。
Aの身長は150cm
Bの身長は155cm
Cの身長は160cm
Dの身長は165cm
Eの身長は170cm
この5人の中で、Cの次に背が高い人は?
「部長に次ぐ地位」と言えば「課長」のことだし、「次点」や「次席」と言えば二番手のことだ。
「Cの次に背が高い人は?」を「Cに次いで背が高い人は?」と解釈すれば、Cよりひとつ背が低い人を指すことになる。
一方で、数値に対して「次」と言えば、それは「ひとつ大きい値」を意味する。
「1の次は?」と聞かれたら普通は「2」と答えるし、「素数で11の次に来るのは?」と聞かれたら「13」と答えるだろう。
「Cの次に背が高い人は?」を「背の高さでCの次に来るのは?」と解釈すれば、Cよりひとつ背が高い人を指すことになる。
つまり、国語的解釈を優先するか、数学的解釈を優先するかなんや。
これが完璧な答えやろ。まったく手間をかけさせてくれるで。
yが3以上の素数とすると、x,yは素数なのでx-yは2の倍数。2の倍数のうち素数なのは2しかないのでn=2。従ってx = y+2であってx+y = 2(y+1) = m。これはmが素数であることに矛盾するので解なし。従ってyは1または2。x-yが2の倍数にならないのはx=2, y=1またはx=3, y=2のいずれか。それぞれm=3, n=1、m=5, n=1で素数解を持つので、ありえる(x,y,m,n)は(2,1,3,1)と(3,2,5,1)。
あー「x-yが2の倍数にならないのはx=2, y=1またはx=3, y=2のいずれか。」が間違ってんのか。
正しくは、x-yが4以上の偶数にならないのはx=2, y=1またはx=3, y=1またはx=3, y=2またはx=5, y=2のいずれか。x=3, y=1はm=4で不適なので、解は(x,y,m,n) = (2,1,3,1), (3,2,5,1), (5,2,7,3)。
m + n = 2xなので、mとnは両方とも奇数 or 両方とも偶数。
m = n = 2のときはx + y = 2を満たす素数x, yは存在しないので不適。したがって、m, nはともに奇数。
x - y = nが奇数なので、xとyは一方が奇数でもう一方が偶数。x = 2だと、nが素数にならないので、y = 2。
よって、
(n, x, m) = (x - 2, x, x + 2)
がすべて素数となるxを求めればよい。
x = 5はこの例である。これ以外に解が無い事を示す。x<5のときはx - 2, x, x + 2がすべて素数となるxは無い。
2 ≡ -1 (mod 3)より、x - 2, x, x + 2の1つは必ず3の倍数になる。したがってx>5のとき、x - 2, x, x + 2の少なくとも1つは必ず合成数になる。
以上から、求める解は
(x, y, m, n) = (5, 2, 7, 3)
のみ。
今日のオレの気分は、出前のカツ丼の衣のようにグジュグジュだったのだ。どうしてグジュグジュな気分になったかというと、説明は長くなる。時計の針は昨夜の寝る前に飲んだビールの缶を開けるときまで戻さなくてはいけない。
午後に喫茶店での打ち合わせが重なったオレは、3件の打ち合わせで合計5杯のアイスコーヒーを胃の中にぶちこんだのだった。普段からカフェイン中毒になりかかっているオレにしてみれば、そーゆー量のアイスコーヒーのカフェインにジューブンな耐性ができているという自負があったのだが、明日の出勤に備えて床につこうと思ったときには、まぶたを閉じてもオレは寝るんだかんねという強い意志に反して、まぶたは大きく開き続け、目ン玉を通じて体外の情報をオレの頭の中へぶち込み続けようとするのであった。
玄関を抜け、リビングルームのドアを開けると食後のコーヒーをすすっていたワイフが僕に言った。
「目がフクロウのように大きく開いているわ」
今日の昼間の僕の行動を見透かすかのように、今の僕の姿を的確に形容したのだった。
「やれやれ」
これでは、冷製パンプキンスープに浸したバンケットのような僕の気持ちをオープンにすることははばかられた。
死を目の前にするとコーヒーの1杯や2杯余計に飲んだことなど、砂浜の一粒の砂のごとく、些細なこととなる。
平壌から38度線を越えて、着の身着のままで逃げてきたときは、寝るに寝れなかった。コーヒーのカフェインに頼らずとも、夜中になっても目は大きく開き、黒い瞳がまん丸く輝いていた。輝ていたというのは正確ではないかもしれない。獲物として捕食されそうな動物が最後の輝きを放っていたのに近い。ちょっとした運命のいたずらで、絶えてしまう命は、最後の神判を待ちつつも生きたいという方向に傾いていたのだ。
エヌ氏はコーヒーから摂取したカフェインの量が、医師からの警告値を超えているにもかかわらず仕事のためにアイスコーヒーを飲み続けた。午後の打ち合わせ中は、特に体調に変化はなかった。エヌ氏が体調の変化に気づいたのは、日付が次の日に変わろうとしていたときだった。
「おーい、ひつじさん!はじめるよ」
エヌ氏は、大人になってから初めて、羊を数えて睡魔を呼び起こそうとしていた。エヌ氏が大人のプライドを捨て、必死に羊を数えていくのだが、途中の数字が素数だの2の何乗になるのかが気になって、羊のカウントが滞ってしまうのだった。単純に1ずつカウントが増えていけばいいだけの話なのだが、数学に精通したエヌ氏にとって、それぞれの数字には、素因数分解ができるとか2と3と6のどれでも割りやすいとか数字にキャラクターがあるのだった。
本稿では、和田秀樹氏らが提唱している暗記数学というものについて述べます。
受験数学の方法論には「暗記数学」と「暗記数学以外」の二派があるようですが、これは暗記数学が正しいです。後者の話に耳を傾けるのは時間の無駄です。
まず、読者との認識を合わせるために、暗記数学に関するよくある誤解と、それに対する事実を述べます。
暗記数学は、数学の知識を有機的な繋がりを伴って理解するための勉強法です。公式や解法を覚える勉強法ではありません。「暗記」という語は、「ひらめき」とか「才能」などの対比として用いられているのであり、歴史の年号のような丸暗記を意味するわけではありません。このことは、和田秀樹氏の著書でも繰り返し述べられています。
類似の誤解として、
などがあります。これらは事実に反します。むしろ、大学の理学部や工学部で行わていれる数学教育は暗記数学です。実際、たとえば数学科のセミナーや大学院入試の口頭試問などでは、本稿で述べるような内容が非常に重視されます。また、ほとんどの数学者は暗記数学に賛同しています。たまに自他共に認める「変人」がいて、そういう人が反対しているくらいです。大学教育の関係者でない人が思い込みで異を唱えても、これが事実だとしか言いようがありません。
嘘だと思うならば、岩波書店から出ている「新・数学の学び方」を読んで下さい。著者のほとんどが、本稿に書いてあるように「具体例を考えること」「証明の細部をきちんと補うこと」を推奨しています。この本の著者は全員、国際的に著名な業績のある数学者です。
そもそも、暗記数学は別に和田秀樹氏が最初に生み出したわけではなく、多くの教育機関で昔から行われてきたオーソドックスな勉強法です。和田秀樹氏らは、その実践例のひとつを提案しているに過ぎません。
暗記数学の要点を述べます。これらは別に数学の勉強に限ったことではなく、他の科目の勉強でも、社会に出て自分の考えや調べたことを報告する上でも重要なことです。
一番目は、従来数学で重要なものが「ひらめき」や「才能」だと思われてきたことへのアンチテーゼです。実際には、少なくとも高校数学程度であれば、特別な才能など無くとも多くの人は習得できます。そのための方法論も存在し、昔から多くの教育機関で行われています。逆に、「"才能"を伸ばす勉強法」などと謳われるもので効果があると実証されたものは存在しません。
大学入試に限って言えば、入試問題は大学で研究活動をする上で重要な知識や考え方が身についているのかを問うているのであって、決していたずらな難問を出して「頭の柔らかさ」を試したり、「天才」を見出そうとしているわけではありません。
二番目はいわゆる「解法暗記」です。なぜ実例が重要なのかと言えば、数学に限らず、具体的な経験と結びついていない知識は理解することが極めて困難だからです。たとえば、
などを、初学者が読んで理解することは到底不可能です。数学においても、たとえば二次関数の定義だけからその最大・最小値問題の解法を思いついたり、ベクトルの内積の定義や線形性等の性質だけを習ってそれを幾何学の問題に応用することは、非常に難しいです。したがって、それらの基本的な概念や性質が、具体的な問題の中でどのように活用されるのかを理解する必要があります。
これは、将棋における定跡や手筋に似ています。駒の動かし方を覚えただけで将棋が強くなる人はまず居らず、実戦で勝つには、ルールからは直ちには明らかでない駒の活用法を身につける必要があります。数学において教科書を読んだばかりの段階と言うのは、将棋で言えば駒の動かし方を覚えた段階のようなものです。将棋で勝つために定跡や手筋を身につける必要があるのと同様、数学を理解するためにも豊富な実例を通じて概念や定理の使い方を理解する必要があります。そして、将棋において初心者が独自に定跡を思いつくことがほぼ不可能なのと同様、数学の初学者が有益な実例を見出すことも難しいです。したがって、教科書や入試問題に採用された教育効果の高い題材を通じて、数学概念の意味や論証の仕方などを深く学ぶべきです。
そして、これは受験数学だけでなく、大学以降の数学を学ぶ際にも極めて重要なことです。特に、大学以降の数学は抽象的な概念が中心になるため、ほとんどの大学教員は、学生が具体的な実例を通じて理解できているかを重視します。たとえば、数学科のセミナーや大学院入試の口頭試問などでは、以下のような質問が頻繁になされます。
教科書や解答例の記述で分からない部分は、調べたり他人に聞いたりして、完全に理解すべきです。自分の理解が絶対的に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけません。
たとえば、以下のようなことは常に意識し、理解できているかどうか自問すべきです。
ほとんどの人はまず「自分は数学が分かっていない」ということを正確に認識すべきです。これは別に、「数学の非常に深い部分に精通せよ」という意味ではありません。上に書いたような「定義が何で、定理の仮定と結論が何で、文中の主張を導くために何の定理を使ったのか」といったごく当たり前のことを、多くの人が素通りしていると言うことです。
まず、用語や記号の定義が分からないのは論外です。たとえば、極大値と最大値の違いが分かっていないとか、総和記号Σ でn = 2とか3とかの場合に具体的に式を書き下せないのは、理解できていないということなのですから、調べたり他人に聞いたりする必要があります。
また、本文中に直接書いていないことや、「明らか」などと書いてあることについても、どのような性質を用いて導いたのか正確に理解する必要があります。たとえば、
などと書いてあったら、これは
という一般的な定理を暗に使っていることを見抜けなければいけません。上の命題はpが素数でなければ成り立ちません。たとえば、l = 1, m = n = 2として、4l = mnを考えれば、mもnも4で割り切れません。他にも、
は正しいですが、逆は一般的には成り立ちません。nとmが互いに素ならば成り立ちます。それをきちんと証明できるか。できなければ当然、調べたり他人に聞いたりする必要があります。
l'Hôpitalの定理なども、もし使うのであれば、その仮定を満たしていることをきちんと確かめる必要があります。
さらに、単に解法を覚えたり当て嵌めたりするのではなく、「なぜその方法で解けるのか」「どうしてそのような式変形をするのか」という原理や意図を理解しなければいけません。たとえば、「微分で極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題だからとりあえず微分してみる」というような勉強は良くありません。
そして、教科書の一節や問題の解答を理解できたと思ったら、本を見ずにそれらを再現してみます。これは「解き方を覚える」と言うことではなく、上に書いたようなことがすべて有機的な繋がりを持って理解できているか確かめると言うことです。
はじめの内はスラスラとは出来ないと思います。そういう時は、覚えていない部分を思い出したり、本を見て覚え直すのではなく、以下のようなことを自分で考えてみます。
こういうことを十分に考えた上で本を読み直せば、ひとつひとつの定義や定理、式変形などの意味が見えてきます。また、問題を解くときは答えを見る前に自分で解答を試みることが好ましいです。その方が、自分が何が分かっていて何が分かっていないのかが明確になるからです。
以上のことは、別に数学の勉強に限った話ではありません。社会に出て自分の考えや調べたことを報告する時などでも同様です。たとえば、近年の労働法や道路交通法の改正について説明することになったとしましょう。その時、そこに出てくる用語の意味が分からないとか、具体的にどういう行為か違法(or合法)になったのか・罰則は何か、と言ったことが説明できなければ、責任ある仕事をしているとは見なされないでしょう。
1993って素数やね。素敵やん