はてなキーワード: コボルとは
コボルディズム(cobordism)とパンツダイアグラムの関係は、トポロジカルな観点からトポロジカル量子場理論(TQFT)や弦理論の世界で重要な役割を果たす。コボルディズムは、異なる次元を持つ多様体の間にどのような接続が可能かを調べる手法であり、特にトポロジカルな場の理論において境界を介した変形(つまり、どのようにして異なる多様体が連結されるか)を表すために利用される。
パンツダイアグラムは、名前の通り「パンツ」形状をした2次元多様体で、弦理論においては2つの弦が1つに結合したり、1つの弦が2つに分裂したりするプロセスを視覚的に表現する。このようなプロセスはコボルディズムの一種であり、3つの境界を持つリーマン面として記述できる。特に、パンツダイアグラムは、物理的には弦の結合や分裂を表現し、数学的には2次元の多様体のコボルディズムとして扱うことができる。
具体的には、コボルディズムの考え方に基づき、あるリーマン面が異なる境界条件を持つ複数の弦に分解される場合、それをパンツダイアグラムで視覚化することができる。例えば、パンツ状のコボルディズムは、3つの穴(境界)を持ち、それぞれの境界が異なる弦の状態に対応する。このようにして、パンツダイアグラムは、弦理論におけるトポロジカルな変換をコボルディズムを通して幾何学的に示す手法の一つと見なされる。
さらに、トポロジカルM理論やTQFTの枠組みでは、コボルディズムやパンツダイアグラムが理論の構造や不変量を計算するための基本的なモジュールとして扱われる。これにより、特定の物理的プロセス(たとえば、弦の結合・分裂やパス積分の構成)が、数学的にはコボルディズムの空間での操作として表現されることになる。
超弦理論の時間依存背景とド・ジッター空間における量子論のモデルについて述べる。
基本的な設定として、(M, g)なる時空を考慮する。ここでMは(d+1)次元多様体、gはその上の計量である。dは超弦理論では9、標準的なド・ジッター空間では3となる。
統一的モデルの作用積分は S = Sstring + SdS + Sint と定義される。Sstringは超弦理論の作用、SdSはド・ジッター空間の作用、Sintは相互作用項を表す。
超弦理論部分はPolyakov作用を基にし、以下のように表される:
Sstring = -1/(4πα') ∫ d²σ √(-h) hᵃᵇ ∂ₐXᵘ ∂ᵇXᵛ Gμν(X) + フェルミオン項
ここでα'は弦の張力、hₐᵇはワールドシート計量、Xᵘは標的空間座標、Gμνは標的空間計量である。
SdS = 1/(16πG) ∫ d^(d+1)x √(-g) (R - 2Λ)
ここでGはニュートン定数、Rはリッチスカラー、Λは正の宇宙定数である。
相互作用項は Sint = ∫ d^(d+1)x √(-g) Lint(Xᵘ, φ) と定義される。φはド・ジッター空間上の場、Lintは相互作用ラグランジアンである。
系の量子化は経路積分形式で Z = ∫ DXDGDΦ exp(iS[X,g,φ]) と表される。
Seff = 1/(16πGeff) ∫ d⁴x √(-g) (R - 2Λeff) + 高次項
ここでGeffとΛeffは量子補正を含む有効的なニュートン定数と宇宙定数である。
AdS/CFT対応の拡張として、Zstring[J] = ZCFT[J] なる関係を仮定する。
ド・ジッター空間の状態方程式 p = wρ, w = -1 を考慮する。pは圧力、ρはエネルギー密度、wは状態方程式パラメータである。
非摂動的効果を含めるため、Z = Zpert + Σn Cn exp(-Sinst,n) なるインスタントン寄与を考慮する。
時空のトポロジー変化を記述するため、コボルディズム理論を用い、∂M = Σ1 ∪ (-Σ2) なる関係を考える。
量子ゆらぎを考慮するため、gμν = g⁽⁰⁾μν + hμν なる計量の揺らぎを導入する。
超弦理論を数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。
𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ
ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。
超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。
BV形式はゲージ対称性と量子化を扱うためにホモトピー代数を使用する。
Δ exp(𝑖/ℏ 𝑆) = 0
ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。
𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
以上の数学的構造を用いて、超弦理論における重要な定理である「ホモロジカル・ミラー対称性の定理」を証明する。
ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である。
𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
1. フクヤ圏の構築:
- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数の消失)を満たすもの。
- 射:ラグランジアン間のフロアーコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。
2. 導来圏の構築:
- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。
- 合成:連接層の射の合成。
- ファンクターの構成:ラグランジアン部分多様体から連接層への対応を定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。
- 構造の保存:この関手が 𝐴∞ 構造や三角圏の構造を保存することを示す。
- 物理的対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデルの物理的計算が一致することを利用。
- Gromov–Witten 不変量と周期:𝑋 の種数ゼロのグロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算と対応する。
5. 数学的厳密性:
- シンプレクティック幾何学の結果:ラグランジアン部分多様体のフロアーコホモロジーの性質を利用。
- 代数幾何学の結果:連接層の導来圏の性質、特にセール双対性やベクトル束の完全性を利用。
結論:
以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカル・ミラー対称性の定理が証明される。
ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロアー境界演算子 ∂ を用いてコホモロジーを定義:
∂² = 0
𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im ∂
∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0
Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)
最初期宇宙の基本構造を記述するために、位相的弦理論の圏論的定式化を用いる。
定義: 位相的A模型の圏論的記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である。
対象: (L, E, ∇)
射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))
この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。
最初期宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。
𝔛: (cdga⁰)ᵒᵖ → sSet
ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である。
𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。
宇宙の大規模構造の位相的性質を記述するために、モチーフ理論を適用する。
定義: スキーム X に対して、モチーフ的コホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。
これは、Voevodsky の三角圏 DM(k, ℚ) 内での Hom として表現される:
Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])
最初期宇宙の高次ゲージ構造を記述するために、∞-Lie 代数を用いる。
定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコビ恒等式を満たすものである。
Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0
最初期宇宙の量子重力効果を記述するために、圏値場の理論を用いる。
定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:
Z: Cob(n) → 𝒞
特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。
最初期宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。
定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:
S(ω || φ) = {
tr(ρω (log ρω - log ρφ)) if ω ≪ φ
+∞ otherwise
}
ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である。
最初期宇宙の量子時空構造を記述するために、非可換幾何学を用いる。
∫_X f ds = Tr_ω(f|D|⁻ᵈ)
M理論を用いたビッグバンの数理的解明は、現代理論物理学の最前線に位置する課題である。以下に、より厳密な数学的枠組みを用いてこの問題にアプローチする。
(M¹¹, g) ≅ (R¹,³ × X⁷, η ⊕ h)
ここで、M¹¹は11次元多様体、gはその上の計量、R¹,³はミンコフスキー時空、X⁷はコンパクトな7次元多様体、ηはミンコフスキー計量、hはX⁷上のリッチ平坦計量である。
M理論の超対称性は、以下のスピノール方程式で特徴づけられる:
D_μ ε = 0
ここで、D_μはスピン接続、εは11次元のMajorana-Weylスピノールである。
M2-ブレーンの動力学は、以下のNambu-Goto型作用で記述される:
S[X] = -T_2 ∫_Σ d³σ √(-det(g_αβ))
ここで、T_2はブレーン張力、g_αβ = ∂_αX^μ ∂_βX^ν G_μνはブレーンの誘導計量、G_μνは背景時空の計量である。
ビッグバンを膜の衝突として捉える場合、以下の位相的遷移を考える:
M¹¹ ⊃ M₁ ∪ M₂ → M'
ここで、M₁とM₂は衝突前の膜宇宙、M'は衝突後の統合された宇宙を表す。この遷移は、コボルディズム理論の枠組みで厳密に定式化される。
11次元重力定数G₁₁と4次元重力定数G₄の関係は、以下の積分方程式で表される:
1/G₄ = Vol(X⁷)/G₁₁
ここで、Vol(X⁷) = ∫_X⁷ √det(h) d⁷y はX⁷の体積である。
M理論の無矛盾性は、以下のBianchi恒等式とアノマリー相殺条件によって保証される:
dH = 1/(2π)² [p₁(R) - 1/2 tr F² + tr R²]
ここで、Hは3形式場、p₁(R)は第一ポントリャーギン類、FとRはそれぞれゲージ場と重力場の曲率である。
Multiverse ≅ lim→ (M_i, φ_ij)
ここで、M_iは個々の宇宙、φ_ijは宇宙間の遷移を表す射である。
これらの数学的構造は、M理論を用いたビッグバンの理解に対して厳密な基礎を提供する。しかしながら、完全な証明には至っておらず、特に量子重力効果の非摂動的取り扱いや、実験的検証可能性の問題が残されている。今後、代数幾何学や位相的場の理論などの高度な数学的手法を用いた更なる研究が期待される。
非可換幾何学は、空間の幾何学的性質を非可換代数を通じて記述する理論である。ここでは、空間を古典的な点集合としてではなく、代数的な対象として扱う。
∥ab∥ ≤ ∥a∥ ∙ ∥b∥, ∥a*a∥ = ∥a∥²
ここで、∥·∥ はノルムを表す。この代数のスペクトル理論を通じて、空間の幾何学的性質を解析する。
量子群は、リー群の代数的構造を量子化したもので、非可換幾何学や統計力学において重要な役割を果たす。
(Δ ⊗ id) ∘ Δ = (id ⊗ Δ) ∘ Δ, (ε ⊗ id) ∘ Δ = id = (id ⊗ ε) ∘ Δ
トポロジカル量子場理論は、トポロジーと量子物理を結びつける理論であり、コボルディズムの圏における関手として定義される。
量子コホモロジーは、シンプレクティック多様体のコホモロジー環を量子化したもので、フロアホモロジーを用いて定義される。
a *_q b = a ∪ b + Σ_{d>0} q^d ⟨a, b, γ⟩_d
プログラマが給料が低いというのは何十年も前から言われているが、何故か?何故改善されないのか?
多くの人はこの疑問に対して判で押したように「技術力が足りないから」あるいは「技術力が適切に評価されていないから」と言う。
これは明確な間違えだと考える。
これは給料や商売というゲームのルールを無視している考え方だ。
言うなれば「ポーカーの大会で優勝するには?」という疑問に対して、「可能な限り強い役を作る」と回答しているようなものである。
確かに強い役を作るのはポーカーで勝つ1つの要素ではあるが、強い役を作れたからって多くのチップが得られるわけではないのがポーカーというゲームだ。
技術力は給料を上げる1つの要素ではあるが、技術力が高いからと言って給料が上がるわけではない。
給料、あるいは売上があがる場合とは需要に対して供給が少ない時だけだ。
多くの人が求めているが、その求めているものが足りない時、給料や値段があがる。
この求めているものの中に技術力という要素が含まれるかもしれないが、多くの人がその技術力を持っている(供給が多い)なら給料は増えない。
農家で言えば、おいしいレタスを作れたからと言って数年で大金持ちになれないのと一緒だ。レタスの需要は既に十分満たされている。
でも、業務で必要となるレベルの技術力を持ったプログラマは十分市場に溢れている。
大勢いるのだから、多少腕がいい程度のプログラマの一人の給料が上がるはずがない。
似たようなレベルの技術力のプログラマが大量にいるのに、プログラマの待遇をよくする理由はないだろ?
むろんビルゲイツのような天才プログラマなら話は別かもしれないが、そんな奴は「給料が低い」場所に最初からいない。
この考えからたどり着くと、駆け出しエンジニアやベテランのIT派遣で給料が低いと言っている人たちは間違った努力をしていると言える。
勉強を続け多少技術力をあげたところで給料が増えることはほぼない。
だって、彼らが今勉強しているものは何万人も同じように勉強しているし、別に仕事でそういう勉強した要素を使うことはないからだ。
まぁ、業界で生き残っていくには勉強は必要かもしれないが、それが給料に繋がることはない。
例えば、ネットで馬鹿にされるコボルプログラマの給料は悪くない、供給が少ないからだ。逆にネットでもてはやされるPythonプログラマの給料は安い、供給が多いからだ。
20年前にコボルが同じようなこと言ってたよ