はてなキーワード: 標準形とは
小説だって何巻というのを無視して途中の巻から読めば作中特有の概念や人物を示す固有名詞でつまづくのは普通で、そうならないように何巻とか上下巻みたいな目印がある。
しかし数学書はそういうのがなく仕方なく手に取ってみても行単位で見知らぬ固有名詞がぼんぼん出て来る。予備知識を手に入れようにも「前の巻」という概念自体がどうにもならない。
岩波基礎(!?)数学叢書だかいうのに微分多様体の本があったと思うけどはしがきには基本的な解析数学と代数学と微積分学を既知のものとして扱っていると書いてあったと思う。
しかしたとえばお前の言う基本的な代数学とは具体的にどこまでの範囲を指しているんだ?ていうか何の本を読めばいい?てかお前が大学生時代読んできた本のなかでその範囲に属するものを列挙すりゃそれで済むし確実なのになぜそうしない?という言葉がつい漏れる。
だって同じ岩波基礎の本でもアフィン代数みたいな本があってこれが大学数学に代数のスタートラインにあたるものなのは確実だろうがそこのはしがきにはその応用は標準形は別の本にまとめられてると書いてあって確かにジョルダン標準形とか二次形式は別の本になっている。
しかしこれらもそれなりのボリュームがあるわけで読んでやっとのことで理解した後に「実はそこまで代数を掘り下げて学ぶ必要はなかった」と言われたんじゃ遅いわけ。
興味ある分野へ最短経路で学べるようになりたい人も当然多いわけで、実は不必要なのに無駄な学習に時間注ぎたくないわな。そわそわしてもこれは必要な学習だということだから頑張れるわけで。
高校みたいに数1とか数2とかなってて高校行ってなくて道筋が明瞭でどうとでも独学できるのとはわけが違う。しかも全てのはしがきに予備知識として学ぶべきものが書いてあるわけじゃなくこのはしがきを頼りとした芋づる式で学ぶべき順番に見当をつける方法をもってしても袋小路に入ることもあるという…。んでどうでもいいことだが俺の学びたいものにベクトル解析が必要なのかいまだに判断がつかない。
日本語に一家言ある人や政治的な思想がある人は検索してるうち日本語学や法律学の論文に当たることもあるだろうけど、そもそも興味があるのもあって字面は難しそうでもじっくり読めば理解できなかったということはなかったはず。でも数学は知識が無い人を門前払いです…。
ドラクエだかでファルスでコクーンなんていうスラングに象徴されてる現象もプレイすればゲーム展開に沿って難なく解消されるわけで要するにそんなのよりずっとタチが悪いのが大学数学の現状
よく「東大入ったら周りが秀才だらけで自信を無くした」とか言ってる奴いるけど、あれ嘘だからな?(本人にとっては本当なのかも知れないけどさ)
日本の大学生はマジで勉強しません。4x4行列の階数計算とかジョルダン標準形の計算とか重積分の変数変換とかがちゃんとできれば確実に真ん中よりは上の層に属します。さらに、専門科目の大学院入試レベルの問題がそこそこ解ければ、旧帝大などのそれなりに学力の高い大学内でも確実に上位1割に属してしまいます。
そして、それじゃマズいわけです。そういう集団の中で「自分は真ん中よりちょっと上くらいだろうから、そこそこ頭がいい」なんて思い込んでしまうと、道を誤ります。具体的に言うと、そういう勘違い君が例年、博士課程などに進み、学位も取れないとか学位は取れたが就職ができないとかで、苦しむわけです。
そういうことになりたくなかったら勉強して下さい。
そのslideshareの人はただのgiftedなのでもう少し他のを参考にした方がいいと思う。
機械学習に興味を持ってビショップ本に行くのもあまりお勧めできない。
過剰にベイジアンだし実際問題あそこまで徹底的にベイズにする必要は無いことも多いから。
よく知らんけどMRIとかの方面もだいぶ魑魅魍魎なので(DTIとか微分幾何学的な話がモリモリ出てくる)、
近づくなら覚悟と見通しを持ってやった方がいいんじゃないかなあという気はする。
オライリーの本は読んだことないけど悪くなさそう。「わかパタ」とか「続パタ」とかは定番でよい。
ビッグデータがどうとか世間では言ってるけど、データのビッグさはあんま気にしなくていいと思う。
ビッグデータを処理するためのインフラ技術というものはあるけど、数理的な手法としては別に大して変わらない。
(オンライン学習とか分散学習とかの手法はあるけど、わざわざそっち方面に行く意味も無いと思う。
超大規模遺伝子データベースからパターン検出したい、とかだとその辺が必要かもしれないけど…)
数学については、線形代数は本当に全ての基礎なのでやはり分かっておくとよい。
「キーポイント線形代数」とか「なっとくする行列・ベクトル」とか、他にも色々わかりやすいいい本がある。
(まあ固有値と固有ベクトルが計算できて計量線形空間のイメージがわかって行列式とかトレースとかにまつわる計算が手に馴染むくらい。ジョルダン標準形とかは別にいらん)
プログラミングはそのくらいやってるならそれでいいんじゃないか、という気はする。行列演算が入る適当なアルゴリズム(カルマンフィルタとか)が書けるくらいか。かく言う俺もあまり人の事は言えないけど。
処理をなるべく簡潔かつ構造的に関数に分割したり、抽象化して(同じ処理をする)異なるアルゴリズムに対するインターフェースを共通化したりとかのプログラミング技術的なところも意識できるとなおよい。
ggplot2は独自の世界観ですげえ構造化してあるんだけどやりすぎてて逆に使いづらい…と俺は思う…。
遺伝子のネットワークとかなんかそれ系の話をし出すと離散数学的なアルゴリズムが必要になってきて一気に辛くなるが、必要性を感じるまでは無視かなあ。
プログラミングの学習は向き不向きが本当に強烈で、個々人の脳の傾向によってどうしたらいいかが結構異なる気がしてる。
向いてるなら割とホイホイ書けるようになっちゃうし、向いてないなら(俺もだけど)試行錯誤が必要になる。
まあせいぜい頑張りましょう。
方程式が線形なら、その方程式系の性質を調べる一般的な枠組みを線形代数学と言う。
線形方程式系が解を持つ条件は、変数の数と方程式の数が同じなら、その係数行列が逆行列を持つということと同値。
行列が逆行列を持たないとき、その行列の行列式が0になるので、例えば2次元かつ方程式2つなら、それらがどのくらい「平行に近いか」と「行列式がどれくらい0に近いか」が関係ある。
変数の数より方程式の数が多いときは行列が正方行列でなくなるので、逆行列は存在しない。
でもその場合でも、(ムーア・ペンローズの)一般化逆行列というものを求めることができて、これを使うと「全ての方程式を最大限満たす解」を書き下すことができる。
この「最大限満たす解」が「完全に満たす解」であれば解が存在することになる。その条件も一般化逆行列による記述を使えば調べることができるだろう。
もっと高級なこと言い出すとジョルダン標準形がどうとかいう話になるかもしれないけど…。
しかし、こういうのをネットで簡単にいろんな人に訊けるというのはほんと羨ましい。
俺の頃にもこういうのがあったら良かったのになあ…。
まずはじめに断っておくと、私は大学の教員ではないので、こうやって愚痴を垂れることはできても、
「そうやって切り捨てないでください。やり方はあるんじゃないですか?」
に答えることは出来ないですし、答えられてもいい加減な素人考えの域を出ないですよ。
なのでもう興味ないかもしれませんが、思いがけず誠実なレスが帰ってきたので、問い掛けられた事柄に返答します。
小学生の喩えは意図を汲んでくれたようなのでそれでいいです。どう答えるべきか?ってのは簡単に結論の出る問題じゃないし、仰る通り算数教本をあたるのが最適でしょう。
例としてあげた2人の教員については、気持ちだけ解って欲しかっただけで。
常微分方程式(ODE)は大学2年次くらいで勉強するんじゃないかと思うんですけど、線形代数で習ったことが大活躍して面白いんですよ。ですから1年の線形代数の授業でもちょっと触れられたら授業面白くなるんじゃないかな、とは誰でも考えると思うんですけど、でもやっぱりそれは本来教えるべき内容を圧迫してまで詰め込むことではないんですよ。線形写像の例に微分がありますよ、ってのはどんな本でも出てくるんじゃないかと思いますが、その時にちょこっと微分方程式の雑談をするとか、それくらいが関の山でしょう、となる。でも、やっちゃった教員が居るんですよ。授業の半分か三分の一か知りませんが、とにかく授業のある程度の割合を使って、線形代数の授業でODEの授業した人が。それが一人目。(もう一つのジョルダン標準形というのは線形代数のやや発展的な内容です。)二人目はもっと過激派だと思ってください。
そういう例を知っているから、まぁやっぱり定められたカリキュラムを逸脱して「進んだ応用例」とか扱うのは難しいよね、って思っちゃうんですわ。
「大学数学教育は、不均一で落ちこぼれを量産するような体制にあって、
そのような中で、ちゃんとわかるように説明してくれと言われても、それは無理です。
私の愚痴はだいたいそんなところです。前半の部分ですけど、別に教育の体制を問題にしたつもりは無いです。出会う教員によってアタリハズレ激しすぎるのは問題かもしれませんがそういう話はしてないです。あなたの求める「俯瞰的な視点」とかを授業に全面的に盛り込むには、線形代数の先にはあらゆるものが待っているから、ちょっと説明しきれないよねってだけです。さらに「何となく分かった気にさせる」のも不誠実だと思っています(多分この点があなたの考え方と根本的に違う点かもしれません)。
ただ、講義中に少しレベルの高い話題について、教師の趣味でいいから題材をいくつか選んで雑談しておくことには価値があると思う。
もう特に言うことはないが、小学一年生の喩えで憤慨したと仰るので、なぜこの喩えを出したのかだけ付け加えておく。
この喩えを出したのは、そういうやる気のない小学生を想定してたんじゃなくて、
小学生の頃、友達がそういえばこんな感じの事言ってたなって思い出したからだ。(もちろん正確ではないけれど)
「算数って、お店やさんにならないと使わないでしょ?国語はみんな使うから、国語のほうが大事だよね。」
じゃあこの子にどう返事するの?ってのを、もし暇なら考えてみて欲しい。
私は小学生の時、確かこれに反論できなかった。その頃、算数がなぜ大事かっていう話を先生がするときはいつも、
みたいな事を言ってたからだよ。でもこれおかしいよね。レジに並ぶときカゴに入れた品物の値段を合計して小銭準備している奴って、まぁ居るには居るけれどそんな事しなくてもいいでしょう。私は当時そんな風に思ってて全く納得してなかったけど、まぁなんとなく算数は将来使いそうだなって思ってた。
結局小学一年生の手の届く範囲に、算数の具体的な使い道ってないわけだよ。大学一年の手の届く範囲で線形代数の使い道って、まぁそんなに無いけれどあるにはある。「例えばこれこれこういう使い道があります」って誤魔化しが効かないぶん、線形代数の場合より面倒だと思うんだ。
行き過ぎた例として、
線形代数の授業でジョルダン標準形と常微分方程式しか教えませんでした。てへり
とか、
微積の授業でゲーデルの不完全性定理から始めて微分はフレッシェ微分教えました。てへり
こういう伝説いくらでもあるのよ。
俺の場合はこう、もっと具体的なテクニックを色々知っておくべきだった、って感じかなあ。
例えば、ふとした時に線形代数の定理とかがパッと出てこないのはかなり困る。ジョルダン標準形ってどんなだっけ、とかそういうのも。