はてなキーワード: アイザック・ニュートンとは
美術史家のハインリヒ・ヴェルフリンは、イタリアのルネサンスの絵画と建築に具体化された古典的な美の概念について考察している。
イタリア ルネッサンスの中心的な考え方は、完璧なバランスです。この時代は、建物と同様に人間の姿においても、それ自体の中に静止している完璧なイメージを達成しようと努めました。あらゆる形態は自己存在する存在へと発展し、全体が自由に調整され、独立して生きている部分にすぎません…。古典的な作曲のシステムでは、個々の部分は、たとえ全体にしっかりと根付いていても、一定の独立性を維持します。それは原始芸術の無政府状態ではありません。部分は全体によって条件づけられていますが、それでもそれ自身の命を持つことをやめません。観客にとって、それは分節、つまり部分から部分への進行を前提としており、それは全体としての知覚とは非常に異なる操作です。
古典的な概念では、美しさは、比例、調和、対称性、および同様の概念に従って、統合された部分を配置して一貫した全体を形成することで構成される。
これは西洋の原始的な美の概念であり、古典および新古典の建築、彫刻、文学、音楽のどこにでも体現されている。
アリストテレスは『詩学』の中で、「生き物、そして部分から構成されるすべての全体が美しくあるためには、部分の配置に一定の秩序がなければなりません」(アリストテレス、第 2 巻)と述べている。
そして形而上学では、「美の主な形式は秩序、対称性、明確性であり、数学科学は特別な程度でそれを実証しています。」(アリストテレス、第 2 巻)
アリストテレスが示唆しているように、この見方は黄金分割などの数式に要約されることもあるが、それほど厳密に考える必要はない。
この概念は、とりわけユークリッド原論などの文書やパルテノン神殿などの建築作品に例示されており、また彫刻家ポリクレイトス (紀元前 5 世紀後半から 4 世紀初頭) の正典によって例示されている。
カノンは、完璧なプロポーションを示すように設計された彫像であるだけでなく、今では失われた美に関する論文でもあった。
医師ガレノスは、この文章の特徴として、たとえば、「指と指、すべての指と中手骨、手首、そしてこれらすべてと前腕、および前腕と腕」の比率を指定していると説明している。
その論文で身体のすべての対称性を私たちに教えてくれたポリュクレイトスは、その論文に従って人間の像を作り、論文と同様にその像自体を正典と呼んだ作品でその論文を裏付けた。
古典的なテキストにおける「対称性」の概念は、双方向の鏡像関係を示すために現在使用されているものとは異なり、より豊かであることに注意することが重要。
それはまた、古典的な意味で美しい、物体の特徴である部分間の調和の取れた測定可能な比率の一種にも正確に言及しており、道徳的な重みも担っている。
たとえば、『ソフィスト』 では、プラトンは高潔な魂を対称的であると説明している。
古代ローマの建築家ウィトルウィウスは、その複雑さと、適切であるがその根底にある統一性の両方において、中心的かつ非常に影響力のある定式化における古典的な概念を体現している。
建築は、ギリシャ語でタクシーと呼ばれる秩序と、ギリシャ人がディアテシスと呼ぶ配置、そしてギリシャ人がエコノミアと呼ぶ比例と対称、装飾と配分から構成されます。
秩序とは、作品の細部を個別にバランスよく調整し、全体としては対称的な結果を目指して比率を配置することです。
プロポーションは、優雅な外観、つまり文脈の中で詳細が適切に表示されることを意味します。これは、作品の細部がその幅に適した高さ、その長さに適した幅である場合に達成されます。一言で言えば、すべてが対称的な対応関係を持っているときです。
シンメトリーは、作品自体の細部から生じる適切な調和でもあります。つまり、与えられた各細部が全体としてのデザインの形に対応することです。人間の身体と同様に、キュービット、足、手のひら、インチ、その他の小さな部分から、リトミーの対称的な性質が生まれます。
アクィナスは、典型的なアリストテレスの多元主義的な定式化で次のように述べている。「第一に、誠実さ、あるいは完璧さです。何かが損なわれていると、それは醜いからです。次に、適切な比例または調和があります。そして明晰さもあります。明るい色のものが美しいと呼ばれるのは、このためです。」(『神学教典I』)
18 世紀のフランシス・ハッチソンは、この見解を最も明確に表現していると思われることを次のように述べている。
「したがって、体の均一性が等しい場合、美しさは多様性と同じです。そして多様性が等しい場合、美しさは均一性と同じです。」 (Hutcheson)。
ハッチソンは続けて、最も美しい対象として数式、特にユークリッドの命題を挙げる一方で、次のような普遍的な物理法則によってその根底にある巨大な複雑性を持つ自然を熱狂的に賞賛している。
「美しさはある、と彼は言います。アイザック・ニュートン卿の計画における重力がそれである」(Hutcheson)
美とは部分間の特定の比率の問題であり、したがって古典的な概念に対する一連の非常に説得力のある反論と反例が、エドマンド・バークの著書「私たちのアイデアの起源についての哲学的調査」で与えられている。
植物界に目を向けると、そこには花ほど美しいものはありません。しかし、花にはあらゆる種類の形とあらゆる種類の性質があります。それらは無限に多様な形に加工されます。 …バラは大きな花ですが、小さな低木の上に生えています。リンゴの花はとても小さいですが、大きな木の上に生えています。しかし、バラもリンゴの花もどちらも美しいです。 … 白鳥は、自白すると美しい鳥で、首は体の他の部分よりも長く、尾は非常に短いです。これは美しいプロポーションですか?私たちはそれが事実であることを認めなければなりません。しかし、首が比較的短く、尾が首と体の残りの部分よりも長いクジャクについてはどう言うでしょうか。 …人間の身体には、相互に一定の比率を保っていることが観察される部分がいくつかあります。しかし、美しさの効果的な原因がこれらにあることを証明する前に、これらが正確に見出されればどこでも、それらが属する人は美しいということを示さなければなりません。 …私としては、これらの比率の多くを非常に注意深く検討したことが何度かあり、多くの主題においてそれらが非常に近い、あるいはまったく同じに保たれていることがわかりました。それらは互いに大きく異なるだけでなく、一方が非常に美しい場合には、 、そしてもう1つは美しさから非常に遠いです。 …人体のあらゆる部分に好きな比率を割り当てることができます。そして私は、画家がそれらすべてを観察し、それにもかかわらず、もし望むなら、非常に醜い人物を描くことを約束します。
「巨人の肩に乗る」って表現は先人の業績の上に新たな業績を積み重ねていくという意味であって、車輪の再発明とはだいぶ意味が違う。
なお、「巨人の肩に乗る」という表現はアイザック・ニュートンが使ったものとして有名。(プラトンは時代が古すぎると思う)
【追記】Wikipedia の「巨人の肩の上」という項目に詳しい説明があって参考になります。それによると、
科学者アイザック・ニュートンが1676年にロバート・フックに宛てた書簡の以下の一節で知られるようになった。
私がかなたを見渡せたのだとしたら、それは巨人の肩の上に立っていたからです。(英語: If I have seen further it is by standing on yᵉ sholders of Giants.)
このニュートンの手紙が原典と見なされることも多いが、最初に用いたのは12世紀のフランスの哲学者、シャルトルのベルナールとされる。
だそうです。
私がかなたを見渡せたのだとしたら、それは巨人の肩の上に乗っていたからです。byアイザック・ニュートン
そういう喩えなら
今もアイザック・ニュートンが生きていて、彼が量子力学を理解せず古典力学に縛られていたら。
という状況の方が近いだろう
かつての偉大な業績は認めるが、もう黙ってろ、としかならない
それ、アイザック・ニュートンの前でも言えるの?
via : http://anond.hatelabo.jp/20080721222220
まあ、どのくらいの数の物理オタがそういう彼女をゲットできるかは別にして、
「オタではまったくないんだが、しかし自分のオタ趣味を肯定的に黙認してくれて、
その上で全く知らない物理の世界とはなんなのか、ちょっとだけ好奇心持ってる」
ような、ヲタの都合のいい妄想の中に出てきそうな彼女に、物理のことを紹介するために
見せるべき10人を選んでみたいのだけれど。
(要は「脱オタクファッションガイド」の正反対版だな。彼女に物理を布教するのではなく
相互のコミュニケーションの入口として)
あくまで「入口」なので、時間的に過大な負担を伴うマニアックな人物は避けたい。
できれば伝記が出てる人物、少なくともブルーバックスレベルにとどめたい。
あと、いくら物理的に基礎といっても古びを感じすぎるものは避けたい。
物理好きが『ケプラー』は外せないと言っても、それはちょっとさすがになあ、と思う。
そういう感じ。
彼女の設定は
物理知識はいわゆる「ブルーバックス」的なものを除けば、中学校程度の物理は知ってる
サブカル度も低いが、頭はけっこう良い
という条件で。
まあ、いきなりかよとも思うけれど、「アインシュタイン以前」を濃縮しきっていて、「アインシュタイン以後」を決定づけたという点では
外せないんだよなあ。知名度もあるし。
ただ、ここでオタトーク全開にしてしまうと、彼女との関係が崩れるかも。
情報過多なアインシュタインの業績の数々について、特にリーマン空間上の時空の幾何学という数学的側面が強い一般相対論について、
どれだけさらりと、嫌味にならず濃すぎず、それでいて必要最小限の情報を彼女に
伝えられるかということは、オタ側の「真のコミュニケーション能力」の試験としてはいいタスクだろうと思う。
アレって典型的な「オタクが考える一般人に受け入れられそうな物理学者(そうオタクが思い込んでいるだけ。実際は全然受け入れられない)」そのもの
という意見には半分賛成・半分反対なのだけれど、それを彼女にぶつけて確かめてみるには
一番よさそうな素材なんじゃないのかな。
「物理オタとしてはニュートン力学と万有引力の法則は“常識”としていいと思うんだけど、率直に言ってどう?」って。
ある種のSF物理オタが持ってる時空制御やタイムトラベルへの憧憬と、一方で時間順序保護仮説を唱えるオタ的な理論物理へのこだわりを
彼女に紹介するという意味ではいいなと思うのと、それに加えていかにもSFオタ的な
の二つをはじめとして、オタ好きのする理論を世界にちりばめているのが、紹介してみたい理由。
たぶんこれを見た彼女は「モーツァルトだよね」と言ってくれるかもしれないが、そこが狙いといえば狙い。
これほどの変態的天才がその後続いていないこと、これがアメリカでは軍事への貢献で大人気になったこと、
数学から経済学までのあらゆる分野に影響を残した天才ぶりはアメリカなら実写テレビドラマになって、
それが日本に輸入されてもおかしくはなさそうなのに、
日本国内でこういう天才が生まれないこと、なんかを非オタ彼女と話してみたいかな、という妄想的願望。
「やっぱり物理は目に見える自然現象を説明するためのものだよね」という話になったときに、そこで選ぶのは「アンリ・ナビエ」
でもいいのだけれど、そこでこっちを選んだのは、電磁気学にかけるマクスウェルの思いが好きだから。
(以下思いつかねえ)
今の若年層でオイラーを目指す人はそんなにいないと思うのだけれど、だから紹介してみたい。
量子力学よりも前の段階で、力学現象を解析的に取り扱う哲学や位相空間の技法は彼で頂点に達していたとも言えて、
こういうクオリティの物理学者が数学者の片手間でこの時代に生まれていたんだよ、というのは、
別に俺自身がなんらそこに貢献してなくとも、なんとなく物理好きとしては不思議に誇らしいし、
いわゆるニュートン力学でしか物理を知らない彼女には見せてあげたいなと思う。
(還元論的)物理の「本質」あるいは「原理」をオタとして教えたい、というお節介焼きから見せる、ということではなくて。
「あらゆる基本的な物理量は保存する」的な感覚がオタには共通してあるのかなということを感じていて、
だからこそ理論物理学の最も基本的な量はハミルトニアン以外ではあり得なかったとも思う。
「複雑系を取り扱う新しい物理」というオタの感覚が今日さらに強まっているとするなら、その「オタクの気分」の
源はハミルトニアン(時間並進対称性に起因する保存量)にあったんじゃないか、という、そんな理屈はかけらも口にせずに、
単純に対称性と保存量の美しい関係を楽しんでもらえるかどうかを見てみたい。
これは地雷だよなあ。地雷が火を噴くか否か、そこのスリルを味わってみたいなあ。
こういう純粋数学チックな物理を元文系の天才物理学者が推進していて、それが非オタに受け入れられるか
気持ち悪さを誘発するか、というのを見てみたい。
9人まではあっさり決まったんだけど10人目は空白でもいいかな、などと思いつつ、便宜的にファインマンを選んだ。
アインシュタインから始まってファインマンで終わるのもそれなりに収まりはいいだろうし、場の量子論以降の
素粒子物理時代の先駆けとなった人物でもあるし、紹介する価値はあるのだろうけど、もっと他にいい人物がいそうな気もする。
というわけで、俺のこういう意図にそって、もっといい10人目はこんなのどうよ、というのがあったら
教えてください。
「駄目だこの増田は。俺がちゃんとしたリストを作ってやる」というのは大歓迎。
こういう試みそのものに関する意見も聞けたら嬉しい。
10人は疲れるなこれ…。穴だらけだわ。そういう意味では元増田すげえな…。