「統計力学」を含む日記 RSS

はてなキーワード: 統計力学とは

2013-05-29

http://anond.hatelabo.jp/20130529175026

理系出身者だが、フェルミ推定フェルミ推定って連呼する頭の悪い人事やコンサルをみると吐き気がするわ。

フェルミってのは量子力学統計力学において人類進歩に多大な貢献をなした大物理学者であり、たんなる概算が得意なオッサンじゃないんだわ。

フェルミ推定連呼厨の何%がフェルミの本来の業績について知っているのやら。

フェルミ馬鹿にすんな。

2012-09-04

http://anond.hatelabo.jp/20120904115443

オブラート着せなくていいなら俺も言うけど、

マクロ現象のミクロ起源についての統計力学も知らないような馬鹿は死んでって言ってるんだよ。

2012-09-03

http://anond.hatelabo.jp/20120903165320

若干バズワード入ってるが、渋滞学とか非平衡統計力学とか勉強するとわかると思うけど、モノの集まりとかそれらの流れというのは、基本的に密度に対して臨界点が存在して、その臨界密度を超えると相転移が起こって一気に効率が低下するもんだよ。

2011-12-30

大学機械工学科について急に語りたくなったので語る。

なんか、誰の役に立つの分からんけど、私が高校生の頃にこういう説明があったら良かったなぁ……とふと思ったので書いてみた。

さて、大学工学部機械工学科に入学するとしよう。基本的に機械工学科に含まれる研究分野は多い。もちろんそれには理由があるのだが、それでもほぼすべての学生が学ぶ共通の内容があり、機械工学科を卒業した学生企業が期待するのはそれらの基礎知識である。そういう意味機械工学は非常に実学に近いと言っても良い。

四力とは何か

機械工学科の教員は本当に口を酸っぱくして「四力を身につけろ」と何度も何度も授業の度に言ってくる。古いタイプ教員ほどその傾向は強い。いわく、「専門分野の基礎がわかっている人間社会では強い」、「四力が身についていなければ学科長が許しても俺が卒業させない」、云々。で、その四力というのは以下の4つの力学」のことを指す。

機械力学というのはいわゆるニュートン力学でいう「剛体の力学」で、弾性・塑性変形しない対象がどのように運動するかを扱う。振動工学とか解析力学とかはだいたいこの延長線上で学ぶ。高校の力学微分積分を足した感じだと思えばいい。

熱力学マクロで見た気体や液体の持つエネルギーを対象にする。これも微分積分エンタルピーエントロピー概念を除けば高校で学べる物理とそう大差はない。次の流体力学と合わせて熱流体力学というジャンルを構成していることもある。統計力学熱力学の延長線上で学ぶことが多いが、量子力学とともに挫折する学生が非常に多い。

流体力学はその名の通り気体と液体を合わせた流体の運動について学ぶ。航空関係の仕事がやりたいなら必須。多くの近似法を学ぶが現実にはコンピュータシミュレーションが用いられるのであまり細かく勉強しても役に立つ場面は少ないかもしれない。下の材料力学とは連続力学という共通の基礎理論を持つ遠い親戚。

最後材料力学は、弾性をもつ(=フックの法則に従う)固体の変形が対象。建築学科とか土木工学科だと構造力学という名前で開講されているが、内容はだいたい一緒。これも多くの近似が含まれる体系で、実際にはコンピュータを使った有限要素法でシミュレーションする場面が多い。とはいえ基本を大学学部時代に学んでおくことは非常に重要

で、これら4つの科目がどう生きてくるかというと、たとえば20世紀における機械工学結晶であるところのエンジン設計なんかにはこれら全部が関わってくる。機械にかかる荷重や振動を解析し(機械力学)、エネルギー効率の高いサイクルを実現し(熱力学)、吸気と排気がスムーズに行える仕組みを作り(流体力学)、これらの条件に耐えうる材料を選ぶ(材料力学)。もちろん就職したあとにこれらすべてに関わることはないし、実際に使える高度な知識を教員が授けるわけではないが、機械設計に際しては必須の基礎知識ばかり。とはいえ後のように四力から直接発展した研究をしているところはまれで、院試のために勉強したのに後はもう使わなくなった、なんてこともままあるわけだが……。

なお高専からの編入生が入ってくるのは2~3回生なのだが、彼らはすでに四力を身につけていることが多く、運が良ければ通常の学部からは羨望と尊敬まなざしを勝ち得ることができる(しか英語ができないので研究室に入ってから苦労することが多いようだ)。

四力以外は?

高度な数学電磁気学であったり、機械加工や金属材料設計に関する専門的な知識もカリキュラムに含まれることが多い。みんな大好きロボット制御工学範疇で、これは四力とは別に学ぶことになる。ロボットメカトロのもう一つの必須分野である電気電子系の講義ほとんどないので独学で学ぶ羽目になるが、微分方程式が解ければ理解にはさして問題はない。プログラミング数値計算などの授業は開講されていることもあるしされていないこともある。とはい機械工学科を出てガチガチプログラマになることはほとんどないし、教えてくれてもFORTRANか、せいぜいCが限界である。さすがにBasicを教えているところはない。……ないと信じたい。

実習や実験がドカドカと入ってくるのは理系宿命なのだが、特徴的なのはCADの実習。おそらく就職したら即使う(可能性がある)ので、研究室に入る前に一度経験しておくといい。もちろん実際にCADで製図するのは専門や工業高校卒だったりするのだが、そいつらをチェックしてダメ出しするのは大卒なり院卒なりの仕事になる。

研究室が多すぎる

四力を身につけたらいよいよ研究室に配属されることになるのだが、基本的に四力を応用した分野ならなんでも含まれるので本当に各研究室でやっていることがバラバラ。隣の研究室が何をやっているのかは全くわからない(もちろんこれは機械工学科だけではないとは思うが……)。そのため学科イメージを統一することが難しく、どうしてもわかりやすいロボットなんかをアピールすることが多くなってしまう。とはいえそういう「わかりやすい」ことをやっている研究室は少数派で、実際は地味なシミュレーション材料のサンプルをいじくりまわしているところが多数派である最近医療工学系の研究をしているところが増えたらしいが、光計測だったり材料物性だったり航空工学だったり、あるいは全然関係ないシステム工学だとか原子力工学教員が居座っていることもあるようだ。こういう教員を食わすために機械工学第二学科(夜間向けの第二部ではない)が設立されたり、環境とかエネルギーとかが名前につく専攻が設立されたりすることがままある(昔は学科内に新しく講座を作るにはいろいろと制限があったらしい)。そういうところは(上位大学なら)ロンダ先として利用されるのが常で、そうした研究室を選んでしまった学部生はマスターの外部生の多さに面食らうことになる。

はいえいろいろ選べるならまだマシな方で、大学によっては計測か材料しか選べなかったり、工業高校ばりの金属加工実験を延々とやらされたりすることもある(ようだ)。やりたいことがあるならそれをやっている大学に行け、とは機械工学科志望の高校生のためにある言葉かもしれない。

で、ぶっちゃけ就職はいいんでしょ?

そう、就職は非常にいいのだ。「学内推薦が余る」という噂を聞いたことがある人がいるかもしれないが、まぎれもない事実である(とはい最近は上位校の推薦でもガンガン落としまくる企業が増えたようで就職担当も頭を抱えているようだが)。機電系なる言葉が広まったのはネットが登場して以降らしいが、機電系機械工学系と電気電子工学系、というぜんぜん関係ない2つの学科をまとめてこう呼ぶのは、それだけこの国の製造業でこの2学科出身者が必要とされているということだろう。我らが機械工学科の後輩たちのために、これから経済産業省には「モノづくり立国」なるわかったようでよくわからないスローガンを推進していただきたい。

inspierd by http://anond.hatelabo.jp/20110929232831

追記:あえて上位と下位の大学事情をごっちゃにして書いているので、受験生諸君はあまり鵜呑みにせず自分リサーチするようにお勧めする

2011-08-08

エネルギー政策に携わる人は『大学演習 熱学・統計力学』くらいはよんでおくとよいような

2011-03-01

http://anond.hatelabo.jp/20110301014003

実際かなり胡散臭いだろうね。

(詳しくないけど)生体反応回路的に効果があるはずだとか、そういう力学的な裏付けがあるならまだしも

純粋統計的に効果がありそうという結果になっただけだとしたらかなり怪しいと言っていいと思う。

経済医学は、複雑系におけるレアイベントの問題だという点では同じだけど、人間の体は物理法則に従っているのは

確実なので、その点において信頼性が全然違うと言えるんだと思う。統計的に有意かどうかはあくまでオマケというか。

経済法則自体が時々刻々変わってるし、そもそも法則性なんてもんがあるのかすらはっきりしない。

母集団を沢山集めればどうにかなるとかいう問題じゃないと思う。着目しない部分については完全に一致させたサンプル

統計力学的に言うとアンサンブル)を沢山集めて何か言えたとしても、1日経ったらあん意味無いということになる。極端に言えば。

ぶっちゃけ統計学社会的需要がある(=金になる)から勉強するけど、科学としては面白くもなんともねーなーというのが個人的な感想

2010-12-02

http://anond.hatelabo.jp/20101202143444

なんか「スポイル」という言葉定義が異なってる気がするな(すぐこういうことが起こるくせに偉そうに何か学問的なことを言った気になっている)。

俺は「破壊する」とか「損なう」という意味で使っている。

視点を変えてみるとか、思考のステージを変えてみるとか結構大事な事なのに、

そういうことは、最低限のレベルに達している人の間でだけやればいいんだよ。

ただの無知がやってもノイズしかならない。

統計力学わかってない奴が『熱の正体って何だろう。実は燃素という基本的な物理的実体があるんじゃないか!?』とか言い出しても、勉強しろ馬鹿がで終わり。

2010-06-26

茂木健一郎うぜー

http://kenmogi.cocolog-nifty.com/qualia/2010/06/post-9d62.html

日本大学入試は「プロクラステスのベッド」とか聞いた風なことを言ってる割に、自分自身の学識のなさを暴露しているんだから噴飯ものだ。

上に挙げた東京大学入試のように、高校までのカリキュラムに出題範囲を限定した上で、その中で人工的な難しさを追求した出題をしていると、大学入試が終わるまでは、高校生はそのカリキュラムの範囲に足踏みすることになる。

こいつ本当に、自分リンク張ってる東大入試の問題見てみたのかと思う。どの科目も基本的な良問がおおむね揃っている(英語については言いたいこともあるがこれは日本英語教育自体の問題になる)。専門家がこの辺の問題に全く歯が立たなければ「廃業しろ」と言われても仕方ない種の問題だ。専門から離れていたら思い出すまでに時間こそかかるだろうが、一度は身につけておかなければ教科書の内容を習得したとは言えないレベルの、基本的な知識と考え方を試す問題でしかない。この程度に深く掘り下げる能力がなければ大学での本格的な勉強になんかついて行けないだろう。

というか、アメリカ大学生勉強量が多いのは、日本受験勉強と同じような内容を学部教育に詰め込んでいるからという面もかなりある日本大学の1年後期や2年前期の電磁気学解析力学で使う米国製の教科書の序文に「本書は学部上級生から大学院生を対象としている」とか書かれていることなんて結構ザラ。

本当は、さっさと量子力学統計力学線型代数か解析幾何の進んだ内容を修得すれば良いのに、18歳の段階では、いつまで経っても高校のカリキュラムの範囲であれこれと勉強をしなければならないことになる。

解析幾何wwwww知ったかぶりがもろばれなんですけど。

あのね、解析幾何っていうのは一口に言えば平面や空間に座標を引いて図形を扱うことで、思いっきり高校範囲です。せめて位相幾何とか微分幾何とか代数幾何とか言えないかね。門前の小僧でもそのぐらいの言葉は聞きかじっておいてくれよ。あんたこそ大学で何してたのかね。

それに、あの程度の数学物理がわからない奴に量子力学統計力学なんて理解できないよ。なんとかごまかして線型代数試験単位を取ることぐらいはまあできるかもしれないけど、線型代数なんて大学入学直後に習う「イロハのイ」なわけだからねえ。

学問というものは、ある程度の段階を超えると、標準化をすることが難しくなる。どの方向に伸びていくかは、分野によっても人によっても異なるからだ。

あのね、あなたが「進んだ内容」とか言ってる「線型代数」ですら「標準化」されたレベルの内容でしかないんですが何か?いわんや高校レベルをや。

アメリカSATは簡単だが、同時に、高校生の時から非可換代数無限集合論精通した学生をつくるかもしれない。

「非可換代数」とか「無限集合論」とか素人臭い用語法(せめて「非可換環論」とか「公理集合論」とかいえよ)が気になるが、東大京大数学科あたりに行けば、高校時代から大学レベル数学に手を出している学生はかなり沢山いるよ。

だいいち、東大入試レベル普通数学を理解せずにそんなマニアックな分野(リー環論とかならマニアックとは言えないだろうが)に手を出してもありがたみが理解できないと思うのだがどうだろうか。つーかお前、非可換って言いたいだけちゃうんかと。

こんなんに釣られている奴がブクマ見ると結構いるのが驚きだよ。

2010-03-22

ポアンカレ予想解決」の話題を見るたびに思う

今回もそうだ。

URL : http://b.hatena.ne.jp/entry/headlines.yahoo.co.jp/hl?a=20100321-00000536-san-int

解決に直接物理現象に関する手法が使われたのではなく、物理現象などを解くのに使われる統計力学の手法を用いたのであって「物理学まで駆使した証明は~」と言うような「物理と密接に関連している」的な表現はやめてほしい。

そもそも物理学経済学であっても数理モデルを作って問題を解こうとすれば数学の問題になる。物理と数に決定的な隔たりがあったり、逆に関連性があるところでまるで関連性がない様な語弊を招く表現はしない方がいい。

PS : 「関連性がないところでまるで関連性がある様な」だった。

2009-09-28

27歳リーマンな俺

量子力学を忘れまくってることに衝撃を受けたのでJ.J.Sakuraiでも読みなおそうと思う。

あと非平衡系を含む統計力学の本で良さそうなのって何かないかなあ。学生時代はクボリョーのアレとかで適当に済ませてたんだ。

しかし勉強することが無限ありすぎて困る。

2009-08-08

お、カルト

ホッテントリ読んでいたら、昔2chに投稿した駄文のことを思い出した。ググってサルベージしたので、ちょっと修正してここに書く。ちなみに、内容についてあまり突っ込むな。いろいろな意味で。

量子オーディオ

オーディオ新しい波に乗り切れなかったシュレーディンガーは、 コペンハーゲンオーディオマニアに向けてこういうことを言った。

完全防音の部屋の中にオーディオセットがある。外から鍵をかけて密室にした後、目覚まし時計によってオーディオセットが演奏をはじめる。このとき、コペンハーゲン派の立場だとつぎのようになるぞ。

すなわち:

  • このオーディオシステムは音がよい状態と音が悪い状態が重ねあわさっている。
  • 部屋の扉を開けて音を聞いた瞬間に状態が収束して音のよさが決まる

これは明らかにおかしい。

オーディオシステムの音のよさは試聴とは無関係にあらかじめ決まっているはずだだから、コペンハーゲン派のオーディオ解釈は誤っている

しかし、ニールス・ボーアは直感に反してオーディオシステムの音は聞いてみるまでわからないだけでなく、聞いてみるまで性能すら定まらないのだとあらためて主張した(聞くまで無調整と言う意味ではない)。

これが有名なシュレーディンガーオーディオシステムというパラドックスだ。

相対論オーディオ効果

昔、音のよさには絶対的な基準があるという説がもっぱら主流だった。だが、こうすると音のよさが見かけの上で無限大になる場合があるという計算結果がでてパニックになった。困ったことに、絶対基準があると仮定して行ったブラインドテストがこれを否定した(マイケルソン=モーレーの実験

その後、1905年アインシュタインが音のよさには相対的な基準しかなく、かつ上限が決まっていると仮定した理論展開を行う論文を書いた。これが特殊相対性理論だ。この衝撃的な論文のあと、加速する車の中のカーオーディオについても適用できる音響理論をうちたてたのが有名な一般相対性理論だ。相対性理論からは、「一生懸命作ったオーディオなのに友達のシステムの方がよく聞こえる」ことが理論的に導き出される。これは日本古来の経験則、「隣の芝生は青い」ともよく一致する。

音質の不完全性

数学者だったクルト・ゲーデルオーディオマニアだったことでも有名だ。

彼はよい音を求めていつもパーツ屋に通っては怪しい部品だのケーブルだのを買い求めていた。友人はそれを揶揄して笑ったが、完璧主義者だったゲーデル自分が買った高級オーディオケーブルが実はやくたいもない屑ケーブルであることを認めず、必死で言い訳を織り上げた。しかし、優れた数学者だった彼は自分言い訳にほつれがあることに気づいた。次の二つを両立する言い訳が成り立たないのだ。

彼は後に有名なゲーデル不完全性定理発表することになる。

すなわち:「完全かつ無矛盾な小売系は存在しない」これは真に偉大な発見で彼の名声を高めた。しかし、後に音の滑らかさを追い求める連続体仮説に思いをめぐらすうちに、カントールと同じく狂気の闇へと落ちていくことになる。

オーディオ統計力学

日本経済が絶頂期にあった80年代初頭、一部のオーディオメーカーは将来市場が頭打ちになりかねないことを予見して体系的な市場アプローチ、すなわちマーケティングを導入し、市場の行方を占うことにした。

このとき問題になったのはオーディオマニア層だ。口うるさいくせに雑誌で発言力のあるマニア市場としては小さいが無視できない。そこで、マニアがどのような振る舞いを行うか、その統計的な側面が研究された。

もっとも有名なのは「二人以上のマニアが同じ意見を持つことはない」という仮定に基づいて行われた研究だ。これは人の話は聞かないくせに、同意もしないというマニアの実に嫌らしい振る舞いを見事に反映したモデルだった。

このモデルに基づく市場動向の予測は、研究者名前を取って、フェルミディラック統計と呼ばれる。この統計は各社が採用して市場予測に使い、大きな成果をあげた。

なお、マニアも興奮してくると見かけの意見らしきものをつなぐことができなくなり、オーディオ好きの高校生と同じになる。この場合は古典的な統計が適用可能になる。すなわち、マニアも興奮すると大衆程度の振る舞いになり、ガウス分布に従うようになる。そのため、オーディオフェアなど興奮しがちな場所では古典統計が使われる。

同じころ、排他的でないマニアを冷静にすると、全員がひとつの意見をもつようになるというボーズ・アインシュタイン統計発表された(アインシュタインは先の相対性音響論を発表したのと同一人物)。しかし、企業の企画担当者が「排他的でなく冷静な」マニア想像できなかったことからこの統計採用されず、一部研究者がその実現性を予想しただけだった。

転機は90年代半ばに訪れた。自分意見より人の顔色を尊重する日本人に対して行われた一連の実験から、ボース・アインシュタイン統計が適用可能な場合が示された。一群のオーディオマニアを集め、彼らを数日にわたって否定することで体力と自意識を削り取ることにより、極度の低興奮状態に置く。この状態では部屋の中のすべてのオーディオマニア尊師の言うとおり提示された オーディオセットはすばらしいと一様に誉めた。この歴史的な成功以来、同様の実験が都内各所の道場で行われたが、その後この実験危険であるとして禁止されている。

やたらテンションの低いオーディオマニアが全員同じ意見を述べるようなキモイ状態は、ボース・アインシュタイン凝縮と呼ばれている。

2009-05-11

http://anond.hatelabo.jp/20090510125009

マクロ経済学ってほんと役にたたねーよなあ。

そのまま使えるとは言わないけど、経済学者は全員非平衡統計力学を必修にしたらいいと思う。

2008-09-10

http://anond.hatelabo.jp/20080909234627

真面目にやるなら統計力学の手法を使ったりする方法もあるし、

ファインマンの経路積分株価過程に応用したりすることはある。

かしこの本はそういうチンケなレベルじゃないwww

想像の遥か斜め上を行く理論(笑)だ

2008-08-01

http://anond.hatelabo.jp/20080801121541

そう単純な話じゃないだろう…。

アインシュタインをクズ呼ばわりして追放する、ってことになりかねないぞ?

統計力学玩具みたいなスピングラスとかを早々に追放してたら、

機械学習関連の今の発展がかなり遅れてたかもしれないぞ?

じゃあ、どうすればいいと思う?

http://anond.hatelabo.jp/20080801112227

そう単純な話じゃないだろう…。

アインシュタインをクズ呼ばわりして追放する、ってことになりかねないぞ?

統計力学玩具みたいなスピングラスとかを早々に追放してたら、

機械学習関連の今の発展がかなり遅れてたかもしれないぞ?

2008-04-23

http://anond.hatelabo.jp/20080423003651

自然科学系か…。一応ビジネスマン向けっていう指定があったから避けたんだけども…。


ボロが出まくってるんでもうやめますすみませんでした。

2008-04-13

http://anond.hatelabo.jp/20080413225222

むしろ物理系の人の方がよっぽど簡単に入っていけるように思いますが。おそらくパターン認識とかデータマイニングとかそういう分野の方だと思いますが、物理やってた人は多いですよ。物理の人は統計力学やってるから色々計算方法のノウハウもわかってるし、エントロピーをはじめ、統計量を「物理量」として具体的なイメージと共に体でわかってるからとても強いと思うんですけれど。

特に変分法なんて、汎関数は全部(相対)エントロピーラグランジアンのどちらかに決まってるんですから。

2007-09-05

http://anond.hatelabo.jp/20070905200627

ブログ炎上熱力学の法則に基づいているかは判断できませんが、貨幣論(マクロ経済学)には統計力学に似た部分があるでしょうね。久保亮五先生の『統計力学』の最初のところにはお金を分配するだけの簡単な金融経済モデルが出てきます。株価ブラウン運動するなら金融商品の値段を決める式は確率微分方程式になる、という話でマートンとショールズはノーベル経済学賞をもらっています。インフレデフレはこれだけではうまく説明できないのですが。

荒れている場を書き込みの文章の統計的性質から判断することは可能かもしれません。

http://anond.hatelabo.jp/20070905170808

ええと、言いたいことがまとまらないのでばらばら書きます。

ハードディスクメモリ上の情報構造物が dense であるとか sparse であるとかいいますよね。当然何かその情報構造物について「密度」を考えているわけですが、その単位はよくわからないものです。気体の「体積」「1分子あたりの熱エネルギー」「モル数」はそれぞれ違う次元の数ですが、ディスク上の情報構造物の「占有領域」「最低/平均ブロックサイズ」「圧縮した場合のバイト数を表現するのに必要なレジスタ幅」はまったく意味が違うのに、いずれもバイト数で表されます。これは情報科学の根底にあるトラブル原因ですが、いまは統計力学情報理論の間に安易な橋渡しができないことだけを意識してください。

ただ、気体でも極端に自由度の低い系(絶対零度近くとか、強い磁場の下にあるとか)では体積は圧力にも温度にも比例しないでしょう。それと似たような話として、自由度の低い情報構造物は情報理論の適用外です。個々のビットの間の関係恣意的であって、あまり統計的扱いに向かないからです。

古典力学の前提で、粒子間の引力も斥力も無視するとボルツマン統計量子力学ならボーズ統計フェルミ統計に従うという話ができますが、すべてのアプリケーションが書き出すビット列にそういう統計を考えることはできるでしょうか?

アプリケーションの各論を展開できるほど柔軟で包括的な数学を使えば、情報構造物のミクロ理論は好き勝手に展開できるでしょう。ただ、それはアルゴリズムの単なる記述ではありませんか?

ログイン ユーザー登録
ようこそ ゲスト さん