「公理」を含む日記 RSS

はてなキーワード: 公理とは

2024-04-15

anond:20240415203641

なんで前提をコロコロ変えるの?特定の前提を持つことに信念はないの?

例えば数学者はZFCの公理無限公理を入れるかどうかについて個人的な信念を持ってるよね?

2024-04-05

政治が関わらない、勉強して楽しい分野ってある?

もちろん、政治とは無関係で、学ぶことが楽しい分野はたくさんあります。以下にいくつかの例を挙げてみます

これらはあくまで一例であり、他にも多くの分野がありますあなたが何に興味を持つか、何を楽しむかは、あなた自身が最もよく知っていることです。興味があることを追求することで、学びはより楽しく、有意義ものになります。どの分野を選んでも、新しい知識スキルを得ることは、自己成長と達成感につながります。それぞれの分野が提供する独自視点方法論は、私たち世界理解する方法を豊かにします。

数学は、例えばZFCの無限公理を取り入れるかどうかにおいて政治的です。プログラミングgithub政治的に評価されます音楽評価政治的です。天文学も、どの理論評価されるかという点で、一部の学者は非常に政治的態度を取ります

ご指摘の通り、学問の中には政治的な要素が含まれることがあります。それは、どの理論方法が受け入れられるか、どの研究資金を得られるか、どの成果が評価されるかなど、多くの要素が関わってきますしかし、それらは学問本質ではなく、人間がその学問をどのように運用するかによるものです。

例えば、数学の中にはZFCの無限公理のような議論がありますが、それは数学のもの政治であるというよりは、その理論をどのように受け入れるか、どのように適用するかという問題です。同様に、プログラミングGitHub政治的に評価されることがあるとしても、それはプログラミングのもの政治であるというよりは、その成果がどのように評価されるかという社会的問題です。

音楽天文学も同様で、それらの分野が政治であるというよりは、その成果がどのように評価され、どの理論が受け入れられるかという社会的問題です。これらの問題は、学問本質からは離れたところで起こるものであり、それぞれの学問提供する知識洞察、喜びを否定するものではありません。

したがって、政治的な要素を排除したい場合は、自分自身の学びのプロセスに集中し、自分が得た知識スキルをどのように適用するかを考えることが重要です。

2024-03-27

anond:20240327131838

スポーツも、数学すらも、ある種この文脈で言うゲームみたいなもんだよな。

定められたルール(公理)のなかで、どれだけのプレイ(定理発見)ができるかに、興奮があるだろう。踊らされるのは愚かだとルール破壊して審判を殴ったり公理否定してめちゃくちゃな怪文書主張して悦に入ることこそ、果たしてどうなのかということだね。

ルールのもとにおあることを、踊らされてるととるか別の意味を見出すかはその人次第

2024-02-21

[] 数学は量子物理学と同様に観察者問題がある

量子力学における観測問題についてはよく知られるように、人間主観性が量子実験の結果に重要役割果たしている。

ドイツ物理学者ヴェルナー・ハイゼンベルクによる有名な引用がある。

私たちが観察するのは現実のものではなく、私たち質問方法さらされた現実です。」

例えば有名なダブルスリット実験では、スリットの後ろに検出器を置かなければ電子は波として現れるが、検出器を置くと粒子として表示される。

したがって実験プロトコル選択は、観察する行動パターンに影響する。これにより、一人称視点物理学の不可欠な部分になる。

さて、数学にも一人称視点余地はあるか。一見すると、答えは「いいえ」のように見える。

ヒルベルトが言ったように、数学は「信頼性真実の模範」のようである

それはすべての科学の中で最も客観的であり、数学者は数学的真理の確実性と時代を超越した性質に誇りを持っている。

ピタゴラスが生きていなかったら、他の誰かが同じ定理発見しただろう。

さら定理は、発見時と同じように、今日の誰にとっても同じことを意味し、文化、育成、宗教性別、肌の色に関係なく、今から2,500年後にすべての人に同じ意味があると言える。

さて、ピタゴラス定理は、平面上のユークリッド幾何学の枠組みに保持される直角三角形に関する数学声明であるしかし、ピタゴラス定理は、非ユークリッド幾何学の枠組みでは真実ではない。

何が起こっているのか?

この質問に答えるには、数学定理証明することの意味をより詳しく調べる必要がある。

定理真空中には存在しない。数学者が正式システムと呼ぶもの存在する。正式システムには、独自正式言語付属している。

まりアルファベット単語文法は、意味があると考えられる文章を構築することを可能にする。

ユークリッド幾何学正式システムの一例である

その言語には、「点」や「線」などの単語と、「点pは線Lに属する」などの文章が含まれる。

次に正式システムのすべての文のうち、有効または真実である規定した文を区別する。これらは定理である

それらは2つのステップで構築されれる。まず、最初定理証明なしで有効である宣言する定理選択する必要がある。これらは公理と呼ばれる。

これらは正式システムの種を構成する。

公理から演繹は、すべての数学コンピュータで実行可能な印象を生む。しかし、その印象は間違っている。

公理選択されると、正式システム定理構成するもの曖昧さがないのは事実である

これは実際にコンピュータプログラムできる客観的な部分である

例えば平面のユークリッド幾何学と球の非ユークリッド幾何学は、5つの公理のうちの1つだけで異なる。他の4つは同じである

しかしこの1つの公理(有名な「ユークリッドの5番目の仮定」)はすべてを変える。

ユークリッド幾何学定理は、非ユークリッド幾何学定理ではなく、その逆も同様。

数学者はどのように公理を選ぶのか。

ユークリッド幾何学非ユークリッド幾何学場合、答えは明確である。これは、単に説明したいもの対応している。

平面の幾何学であれば前者。球の幾何学であれば後者

数学は広大であり、どのように公理選択するかという問題は、数学の基礎に深く行くと、はるかに感動的になる。

過去100年間、数学集合論に基づいてきた。

すべての数学オブジェクトは、いくつかの追加構造を備えたセットと呼ばれるものであるということだ。

たとえば自然数のセット1,2,3,4,...は加算と乗算の演算を備えている。

一般的なセットとは、数学で正しく定義されたことがない。

集合論特定正式システムによって記述される。Ernst ZermeloとAbraham Fraenkelと、選択公理と呼ばれる公理の1つに敬意を表して、ZFCと呼ばれる。

今日数学者は、すべての数学を支える集合論正式システムとしてZFCを受け入れている。

しかし、自分自身を有限主義者と呼ぶ少数の数学者がいる。

彼らは、無限公理と呼ばれるZFCの公理の1つを含めることを拒否する。

言い換えれば、有限主義者正式システムは、無限公理のないZFCである

無限大の公理は、自然数の集合1,2,3,4,...が存在すると述べている。すべての自然数に対してより大きな数があるという声明(「ポテンシャル無限大」と呼ばれる)よりもはるかに強い声明である

有限主義者は、自然数リストは決して終わらないことに同意するが、いつでも自然数の集合の有限の部分集合のみを考慮することに限定する。

彼らは一度にまとめたすべての自然数の合計が実在することを受け入れることを拒否する。

したがって、彼らはZFCから無限公理を削除する。

この公理を取り除くと、有限主義者証明できる定理はかなり少なくなる。

正式システム判断し、どちらを選択するかを決定することができるいくつかの客観的基準...なんてものはない。

主観的には、選ぶのは簡単である

時間空間を超越した何かを象徴しているので無限大が大好きだ」と言えば無限大の公理を受け入れることができる。

ゲーデルの第二不完全性定理は、十分に洗練された正式システム(ZFC等)は、自身一貫性証明することができないと述べている。

数学者は、今日のすべての数学の基礎であるZFCが確固たる基盤にあるかどうかを実際に知らない。

そしておそらく、決して知ることはない。

なぜなら、ゲーデルの第二の不完全性定理によって、より多くの公理を追加することによってZFCから得られた「より大きな」正式システムにおけるZFCの一貫性証明することしかできなかったから。

一貫性証明する唯一の方法は、さらに大きな正式システム作成することだけだ。

数学を行うためにどの公理選択すべきかについて、実際には客観的基準がないことを示唆している。

要するに、数学者が主観的に選んでいるというわけである自由意志に任せて。

公理のための主観的基準というのは、より豊かで、より多様で、より実りある数学に導くものを選ぶという人は多い。

これは自然主義と呼ぶ哲学者ペネロペ・マディが提唱する立場に近い。

自分自身制限する必要がないので、無限公理を受け入れる。

特定公理のセットを選択する行為は、量子物理学特定実験を設定する行為に似ている。

それには固有の選択肢があり、観察者を絵に導く。

これが、一人称視点とそれに伴う自由数学において正当な場所を取る方法である

2024-02-18

anond:20240218184732

記号操作が一意に定まらないとするなら、それは推論規則公理系が成立しないことを意味する

数学者も最も基本的な体系が証明できないことは認識しているわけで、「特定規則公理を真と仮定とした場合において」他の命題を導こうとするのが数学の考え方

増田は「その仮定証明し得ないですよね?」という数学者にとっても承知の内容を繰り返してるだけに過ぎないのでは

anond:20240218142849

そもそも

全ての自然数加法による計算は、感覚ではなく公理定義から導出出来るものであるということの一例と私は考えています

1+1=2は直感的に正しそうだけど証明可能不可能かは大問題証明できないと数学破綻している可能性があります

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13293425613

みたいな主張、ようは「数学的に証明されたら感覚的なことではない。感覚じゃない事実なことを示すために証明するんだ」みたいな主張に対する違和感から始まってんだよね、元増田は。

いや、定義自体が、人間インプットされた「同一/非同一」とか「書き換える」みたいな原始的観念/身体感覚依存してる部分が多少なりともあって、このプリセットが全人類で同一か確認する術が不可知なのだから

感覚あいまいなもとみなし、そこから『全く』逃れるために証明するんだ」という考え方は、誤りだろって突っ込みたい動機から始まってるんだよね。全くじゃなく、程度問題だろ、全く感覚の影響を排除できてるというのは思い上がりだろっていう。もちろん厳密であろうと努力する態度は尊いと思うよ。

なんか最近"数"が増田流行っているみたいなので、ワイくんも作文してみました

数の概念文化歴史によって変化してきた。古代ギリシアでは、1は数ではなく単位とされていたが、現代では自然数の集合 N の最小の要素とされている。

 

数の概念哲学的問題を引き起こすことがある。無限や超準数といった数は直観に反する性質を持つ。例えば、無限自分自身に加えても変わらないという性質を持つ(∞+∞=∞)。超準数もまた通常の数の演算法則が成り立たない(ω+1≠1+ω)。

 

数は実在するのか、それとも人間の心の産物なのかという存在論的な問いもある。数の実在主義は、数は客観的実在であり、人間の心とは独立して存在すると考える。数の構成主義は、数は人間の心の産物であり、人間言語思考依存して存在すると考える。プラトニズムは、数はイデア界に存在する普遍的実在であると考える。ピタゴラス主義は、数は万物の根源であると考える。論理主義は、数は論理的な体系から導き出されるものであると考える。

 

数の概念数学の基礎付けにも関わる。数学公理定理は、数の概念に基づいて構築されているが、その正当性や完全性には限界がある。ゲーデル不完全性定理は、数の概念を用いた形式体系には矛盾しないが証明できない命題存在することを示した。

 

数の概念は、かつて客観的現実を表すものと考えられていたが、量子論の発展により、数はより複雑で主観的ものである可能性が高まった。古典物理学では、数は物理量と一致していたが、量子論では、数は物理量とは別の抽象的な概念として使われている。

 

自我自由意識と同様に、数の本質はまだ解明されていない。しかし、量子コンピューターは数の概念を利用して作られており、数は物理システム表現する有効ツールであることは、どのレイヤースケールにおいても明らかである

 

数の概念私たち知識理解拡張するものであり、同時に私たちの疑問や不確実性を増やすものでもある。

 

数の概念は、私たち世界に対する見方を変える力を持っている。(どやああああ)

 

————————-

流行を作った増田

数学定義は本当に厳密で一意なものと言えるのか気になりました

https://anond.hatelabo.jp/20240216124331

 

 

 

書き起こす必要があるときちゃん文章書いてます。まとめの参考にしてね

anond:20240310160032 anond:20240310173949

2024-02-17

anond:20240216215810

「Aかつ¬Aの証明を得ることができる」に対して、「いいや得られない。お前がそのように見せかけているだけだ」おれの計算(記号処理)手続きこそ推論規則に適っているし正しいと、反論されたら?

また、「そもそもここでいう『得る』とは」どういう意味か?と突っ込まれたら曖昧でなく『得る』ということが『得る結果の具体例ではなく』『どういうことか』記述できるのかという話です。

¬¬A→Aという規則に基づいた結果が

¬¬¬¬¬A→¬¬¬(¬¬A)→A

なんだよ!と言い張られる。もちろん常識的にはおかしいと思えますが、いまは突き詰めたことを言っています

一般には、¬¬¬¬¬Aを書き換えるために、この記号列の一部分¬¬Aに着目して、規則からAと書き換えられるから、この結果を¬¬¬(¬¬A)に代入?して、¬¬¬Aに書き換えられる、という思考プロセスをとるでしょう。

しかあくまものとしては、ここで考えているのは¬¬Aではなく¬¬¬¬¬Aなわけです。

規則通りに書き換えられてない、言い換えるなら同じ規則を使っていないという主張に対して、そもそも同じ規則適用できているということ、規則が同じとはどういうことか自体定義公理に組み込むことはできるのか。

矛盾証明ということはまだその概念記号列で示す余地があるが、規則が同じかどうかという定義もとい「規則」は厳密に定義可能かということです(無定義語として関係性の定義でもよい)。図形が合同か、みたいな合同の概念定義など比べてもまたレイヤーが一段メタ的になっていて厄介というか。「違うのは自明じゃないか!」といっても、自明説明できてこそ自明なのですが、ここでいう同じかそうでないかということについてはそれを根拠だてる定義原理的に無理なんじゃないかと思えてしまます

さきほど『得る』という言葉に突っ込まれたら云々ということを言いました。

ブコメには「自然言語曖昧さで数学をの厳密さ否定しようとしてるだけだ」というのがあります

別に私は自然言語曖昧さを問題にしていません。そこは問題本質ではないです。

しろこうした言葉一般に疑いようなく明らかなものです。「左右」とか「これやあれ」みたいな近称や遠称の概念などもそう思われるでしょう。

しかしむしろこれらの概念には一切曖昧さはないという前提に立っても、これもごく単純な話で、曖昧でないからといって、いままでその概念を持ってなかった知性的存在に対して、「これ」や「左右」といった「概念」を、対面やジェスチャーを使えばいざしらず、記号列を用いて一意に定義できる保証はないよね、ということです。定義の厳密さを担保する必要条件が、記号理学に基づくということにあるのなら、数学を厳密とのたまうかぎりにおいて、当然対面やジェスチャーではなく、これとか同じとかみたいなもっと原始的な部類の言葉まで全て記号で一意に定義できることを示せなければならないでしょう。

あとあなたが↓のトラバと同一だと言ってくれたら以降↓の方のツリーに返信書いて一元化するのでそのつもりで

https://anond.hatelabo.jp/20240216215810

ちなみに関連しそうな話題として自分自身ラムダ式勉強した経験があるけど

1. 変数xはラムダ項。

2. ラムダ項M, Nに対して (M N) はラムダ項。この形のラムダ項を適用ラム適用)という。

という定義があるんだけど、これに基づけば(x x)というのもラムダ項じゃないのって思ってた。

でもラムダ式で(x x)なんて形のは見たことないし、違うんだろうなと。

でも論理的にはなぜ違うのか全く納得できてないので(納得感が正しさにとって問題じゃないとはいえあえて言うが)(x x)だってラムダ式でしょって胸を張って言い張れる。

分かってる人からみれば、そして俺にとっても¬¬¬¬¬A→Aと同程度にバカげた主張なんだが、そのわかってる人にとっても「この規則ならこういうことが言えると思うのに、なんで正解とされてるのと自分が思ってることが違うの?」ってなることはあるはずで、それはこの世で一番数学ができる人であってもありえること。この世で一番数学ができる人さえ規則を正しく適用できていないらしいときそもそも正しい適用とはなんだってなりそうに思うんだが。

anond:20240216210851

これは本質的な問で、哲学では「規則問題」あるいは「規則パラドックス」として知られる古典的問題意識です。「規則問題」の議論では足し算などが例として良く用いられますが、ここでは形式的証明を例に説明します。

形式的証明体系において、「推論規則」あるいは「公理」は無限種類あるため一覧表を作ることができません。そのため通常は「推論規則型(rule schema)」や「公理型(axiom schema)」と呼ばれる、無限個の論理式をひとつの式で代表したものを使って有限っぽく表示します。例えば、ツリーにある「 A と A → B が証明可能なら B が証明可能」というのは規則スキーマです。これは A と B がどのような論理式でも使える規則型であり、(A と B を具体的な論理式に置換して得られる)無限種類の規則の集まりを有限で表現したものです。例えば「x=0 と x=0 → x^2=0 が証明可能なら x^2=0 が証明可能」は規則の例です。

そして問は、まさに規則型や公理から規則を得る方法はどうして合意できるのか、ということだと思います。例えば「x=0→x^2=0 と x=0→x^2=0→-x=0 が証明可能なら -x=0 が証明可能」はさきほどの規則型の形に当てはまらないものなのですが、この "事実" を全員が了解しているのがどういう理屈によるのか、というのが問です。そしてこれは正しく「規則問題」です。

ここから私見ですが、「規則から規則を得る方法について全員が一致する見解に到れる」というのは幻想でしょう。ただ、現実数学を営む上では「規則から規則を得る方法について数学者の見解は一致している」と思い込んでもこれまで大きな問題を生じてはいないので、問題が生じるまでは別に気にしなくていいのではないか、という感じではないかと思います。元々の問であった教師と生徒の例についていえば、数学コミュニティに近しい立場である教師コミュニティ流儀を教えている、ということになるのではないでしょうか。

2024-02-16

anond:20240216160814

現代数学者ほとんどは形式化された数学の体系であるツェルメロ-フレンケル集合論ZFCを使っています.

言及されている通り, ゲーデル不完全性定理によってZFCが無矛盾であるならばZFCは自身の無矛盾性を証明することができません. ZFCが矛盾している可能性はあります. ZFCの無矛盾性に関しては, 一方でZFCを用いて多くの数学者数学をしている中でまだ矛盾が見つかってないという傍証もあります.

仮に矛盾が見つかってしまった場合, その後の方向性はいくつか考えられます:

1. その矛盾証明をよく調べて, その原因を取り除いてZFCより弱い新たな数学体系を構築する.

これに関しては普段数学をする際にフルでZFCを使っているわけではないので, 合理的なZFCより弱い体系を見つけることができればこれまでの数学を続けることができるかも知れません.

2. その矛盾もっと深刻で代替案が見つからない場合.

この場合数学がどうなるか想像がつきません. 数学にとって大打撃になると思います.

他にもZFC以外の別の数学形式的な基礎づけを与えようという動きもあります. またZFCより改善させるような新しい体系, 公理形を見つける方向の研究もあります.

このように数学基礎論という数学の一分野は形式化された数学のもの数学的に調べようという分野があります.

anond:20240216213037

まず数学的な内容の真偽の判断に納得感や権威などは関係ないです.

あくま言及されている状況の場合は, 先生の方が想定している証明の体系では生徒が与えた記号列, 文字列合致しなかったためそれが証明ではないと判定されたのではないでしょうか?

もちろん極論を言えば先生の方から公理や推論規則を全て提示すべきというのはそれはそうですが, そこは暗黙の了解文脈依存する話です.

anond:20240216213037

まず数学的な内容の真偽の判断に納得感や権威などは関係ないです.

あくま言及されている状況の場合は, 先生の方が想定している証明の体系では生徒が与えた記号列, 文字列合致しなかったためそれが証明ではないと判定されたのではないでしょうか?

もちろん極論を言えば先生の方から公理や推論規則を全て提示すべきというのはそれはそうですが, そこは暗黙の了解文脈依存する話です.

anond:20240216210851

言及されている状況を(記号論理のような)推論規則を用いて何らかの証明を書いていると仮定します.

証明」というもの特定の条件を満たす公理と推論規則を用いた操作の列として(数学的に)定義されています. ここで公理や推論規則などはあらかじめ固定されています.

与えれた記号列, 文字列証明であるかどうかもその定義に基づいて判定することができます.

言及されている状況での会話ですが, あくまで推察ですがおそらく生徒の書いた証明証明の体を成しておらず, 皮肉混じりに言ったのではないでしょうか?

(上で言及しているように, 公理や推論規則を変えた場合, どういう記号列が証明であるかも変わります. )

anond:20240216124331

哲学など数学以外のことは専門外のため, あくま数学に関することだけ言及させていただきます.

ユークリッド幾何学言及されているように数学歴史紀元前まで遡りますが, 数学形式化が意識され始めたのは1900年代以降と最近の話です. 主にヒルベルトによって主導されたものだと私は理解しています. (もちろん多くの数学者がこのプログラムに関わってきました. ) 数学形式化や形式主義で調べると参考になると思います.

数学的な内容に関して言及したいことは多くありますが, かいつまんで述べさせていただきます.

(あくまでこれは元の記事が間違っているなどと主張しているわけではないです. 現代数学の考え方や雰囲気の一部を分かっていただければ幸いです. )

現代形式化された数学原理的には決められたルール(公理と推論規則)を用いて行われる一連の手続きです. それらの「意味」が何かは一旦全て忘れてください. ここで公理とはあらかじめ定められた記号列で, 推論規則はいくつかの文字列を用いて新しい文字列を生み出す操作です, 例えば文字列A→BとAが与えられたとき文字列Bを得る操作があります. 定理(数学命題)とはこの操作によって生み出される文字列です. これらの操作数学における証明形式的に記述したものになっています. 論理式などもこの形式化のもとで特定の条件を満たす文字列として定義されます. 例えば論理式Pの否定は¬Pという文字列です. (ここでは否定を表すための記号として¬という文字列を用いています. )

ここまで文字列だけを考えた形式的なものですが, 構造モデルを使うことによってこれらの文字列解釈する(つまり意味を与える)ことができます. (詳細は省きます. ) 構造モデルを定めることによって論理式の意味が一意的に定まります. またそれらの取り方を変えることによって意味が変わることもあります.

これの考え方によって(数学的な)意味形式から分離されています. さらに気になる場合ゲーデルの完全性定理などを見てください.

そして適切な公理と推論規則を定めることにより数学のもの形式的に扱うことできます. その適切な公理はツェルメロ-フレンケル集合論(ZFC)と呼ばれており, 現在数学者はこのZFCを用いて数学をしています. (一部, 圏論などでZFCに収まらない議論があると聞きますが, それらもZFCの適切な拡張を考えることで解決できます. )

まり, これまでに書かれた数学証明などは全てこのZFCを用いることで文字列操作に書き換えることができます.

一方で数学論文普段言葉(自然言語)を使って書かれます. これは本当に全て文字列に書き換えることをした場合, 可読性が著しく落ち, また分量も膨大になるため人が読めないためです. しか証明自然言語で書きつつも, いざとなったら形式的に文字列に書き換えることができるという前提に立っています. そしてこれは理論的には可能であり, 数学の厳密性を担保しています.

定義の一意性」に関してですが私自身が元記事の要点を完全に理解しているわけではないのですが, 数学に関していうとある数学概念定義複数あることはよくあります. もちろんその複数ある定義同値であることを証明されなければなりません. ここで同値というのはある数学対象A定義Pと定義Qで与えられていた時に, 「Aが定義Pを満たすならば, 定義Qを満たす. またAが定義Qを満たすならば定義Pを満たす. 」ということです. 実際に使う際には用途に合った定義を用いることになります. それらは同値なのでどれを選んでも問題ないです.

以上がざっくりとした形式化された数学に関してです. 参考になれば幸いです.

追記: これは筆者個人の考えですが, 数学哲学議論はしっかりと分離してなされるべきだと考えています. もちろん相互交流はなされるべきですが, 両者を混同するのは誤解や誤りの原因になると思います.

anond:20240216165842

から公理定義見ればそうじゃないってわかるやろ

anond:20240216165447

そりゃそうだが?公理証明なしに認めるものだろ?でもその認める内容は一意かつ厳密に表現できてるのかって話。

anond:20240216124331

はい、そうですよ。

なので厳密に定義しなおされてます

突っ込む人にとっては厳密ではなくなっていませんか?


されてません。 

そうであるのになぜ上記のような定義公理が厳密なもの認識されているかといえば

anond:20240216160225

数学科の人に聞きたいことあったんだが、「自身が無矛盾なら自身が無矛盾だと証明できない」ってあるじゃん

それなら数学者は無矛盾公理系を使いたいはずなわけだけど、使いたい公理系が無矛盾らしいかどうやって検討してるんだ?

数学定義は本当に厳密で一意なものと言えるのか気になりました

たとえばユークリッド幾何学での直線は「幅をもたず、両側に方向に無限にのびたまっすぐな線」だそうですが、これも「幅」とは?「(幅を)持つ」とは?両側とは?「方向」の定義は?「無限(限りが無く)」とは?そもそも「限り」って何?「のびる」とは?「まっすぐ」とは?「線」と結論づけるのは循環論法じゃないの?

と突っ込む人にとっては厳密ではなくなっていませんか?

ここで、これらの言葉意味は、国語辞典に載っている意味と同じものだよなどといおうものなら、それこそ数学の厳密性を否定したようなものになってしまっていると思います

たとえば「方向」を調べたら「向くこと」とでます。これを調べると「物がある方向を指す」というふうに出ます。これは循環論法に陥ってますし、「物の正面があるものに面する位置にある」という別の語釈もありますが、物とは?正面とは?面するとは?位置とは?となります。これを繰り返せば結局どこかで循環論法に行きつくでしょう。

そもそも数学の根幹部分を支える論理学重要概念である否定(そうでないこと)」にしても、厳密に定義することは可能なのかと思います

「~でない」というのは、そうであることがないということ、と言ってみたところで循環論法

そうであるのになぜ上記のような定義公理が厳密なもの認識されているかといえば、「さすがにここまで平易な単語の組み合わせで書けば、これらの単語については私が常識として理解してる意味と同じ常識を、相手も持ってるはずだから同じ理解をするよね?」みたいな態度に立っているんだと思います

結局相手も同じ常識を持っているという不確かな信念によりかかっている、甘えている点で、数学記述もまた完全に厳密で一意というわけではないのかなという気がしてくるのです。

そもそも「方向」なんていうような概念は、言語によって定義されたものを知っているというよりは、幼少期に言語習得していく過程で、それが話されるシチュエーション、つまり五感などあらゆる感覚総体とセットでそうした言葉が使われているという環境に身を置いているなかで理解しているにすぎません。理解内容が各個人で全く同じである保証はどこにもないと思います

どんなに高度な数学表現も究極的には自然言語還元されるはずで(どんな高級言語機械語に置き換えられて処理されるように)、自然言語の各単語に対する人々の理解原理的には五感に根差し感覚的なものなのだから数学記述が厳密で一意というのは、結局はほかの記述の仕方に比べた程度問題(つまりは誇張表現)なのかなと思うのです。

感覚によらない「証明」をすることに価値を見出す人が数学をありがたがることがありますが、数学もまた根源的には感覚ありきの理解に基づいていると思うわけです。

この考えは間違っているでしょうか?そうであればどうして間違いなのか、どこがどう理解を誤っているのか知りたいので教えてください。

ちなみにたとえば「否定」というのは、根本的には、やはり言語理解が完結しているものではなく、現実の状況としての存在非存在にそれぞれ直面して、それぞれに対して「○○がある」「○○がない(なくなってる)」と言われてる場面を経験したうえで、その状況から理解した内容のさらなるアナロジーとして理解してるに過ぎないと思います(理解のあり方が、言語的ではなく、観念直観的)。

数学が他よりも他者と厳密に同一な合意が常に成り立つ、その工夫として、抽象度を高くしているのがその工夫にあたるのではないかという人がいました。↓

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q14293524459

しか抽象度を高くすることは、合意内容のずれを減らすという点で「有効でもあり逆効果でもある」のではないかと思いました。つまり諸刃の剣なわけです。

有効である理由リンク先に書かれているのでそこに説明を譲るとして、逆効果であると思う私の説明を書きます

まり抽象度が高い概念は、抽象度が低い概念や直接的な事物に比べて理解が難しい傾向があるのがまずあるわけです。

また定義者の提起する定義をそれを発信される側が期待通りに理解しているか確認するのも、抽象度が高い概念ほど困難な傾向はあると思います

これ自体ある意味抽象のものなのでたとえが悪いですが、たとえば「左を向いて」という発言に対して、「左」を向く反応をすることで、この人は左について正しく理解してそうだなという確認(いや原理的には推定というべき)することができます

抽象度が高くなるほど具象と結びつけたこのような正しく理解してるかの評価確認テストをすることが難しくなるでしょう。

といってもそもそもわれわれは相手自分の言ったことを期待することと厳密に一致した内容で理解してるか確認することは原理的に不可能です。

頭をパカっと割って理解内容を覗きみるということはできないですから

対象となる言葉に関連したその人の発言や反応をみて、理解の結果としての発言や反応として、その人がある部分で正しく(定義者の期待通りに)理解してるだろうということを推定するしかありません。

しかも全体ではなく一部だけの理解が正しくても、発言や反応には異常が見られないということもあるでしょう。

反応や発言いくら調べても、概念全体を期待通りに理解してるかのテストには無限通りのパターン必要と思われ、原理不可能と思います

哲学的ゾンビにも通じそうな話ですが、日常範囲内で「理解齟齬があるような反応が返ってこないなら」そんな「理解が完全同一でないかもしれない」という可能性上の話を心配する必要はないというのはその通りでしょう。

ただ場合によってはそれが表出したように見える一例が、あれの原因がこれだとは言いませんが、望月新一がABC予想を証明したという論文での紛糾みたいなことが起こる一因にはなりえると思います

あれだけ理論として抽象的な概念を積み重ねた先には、定義者とそれ以外のその定義を見た人とでの理解のずれは、反応や発言として顕在化してくるほどになっても不思議ではありません。(定義者の解釈が正しいという優劣の問題ではなく)

特定公理範囲内において論理的矛盾のないシステム

はいますが、そもそも矛盾」とは何か?「論理」とは?「範囲」とは?とは、といくらでも曖昧でしょう。

たとえ矛盾記号論理の表現記述して定義した気になったところで、じゃあその記号定義ないし意味は?とどこまで突っ込まれても感覚に頼らない定義可能なんですかね?と思います

dorawiiより

追記

数学に限らない話じゃんっていうのはまあその通り。

でも定義について「厳密で一意」であることを(得意げに?)標榜してるのは数学(+論理学)とそれベース客観的であろうとする学問ぐらいだから別にエントリ詐欺じゃないよね?

a=b、aはbだ。「は」って何?「だ」って何?「英語的にはどっちもisという語に集約されてるけど、じゃあisってなんだよ」ってところから概念の共有をしてない前提に立った時、その概念を非感覚的で厳密に共有することは可能なのか、それが「完全に」できたと確かめるのにはどうすりゃいいって話よ。

言葉という形式が従で、それに乗るべき内容が主であることは百も承知だが、形式言い換えれば入れ

物抜きに内容を厳密に伝えられるのか、入れ物の存在無関係な、内容の厳密な伝達というテレパシーじみたものを考えることはそれこそ論理的に正しいのかという話でもある。

言語的なテレパシー論理的に矛盾してるので存在しえないのではないかとは思っている。

さら追記


イデア論かな哲学書読めばってブコメついたけど、順序が逆なんだよね。

イデア論とか学校で習って本読んだりして教養として知ってるからこそ、改めてその考え方を自分なりの具体的な考察対象にあてはめて思索したくなるわけよね。

先達の哲学者たちがいなかったら俺はいまだにブルアカで抜くだけの毎日だわ。むしろ哲学者リスペクト100パーセントなんだよね。

語彙力ないので語弊ありそうなのは百も承知だが、哲学って考え方の基幹部分のオリジナリティーはそんな求められてないんだよ。

しろ先人から受け継いだ考え方をどう今の時代の具体的な問題適用して考察を広げるかが大事なので、ちょっと哲学かじったような素人目には過去論文の焼き増しに見えてその存在意義が理解できないような論文ごまんとあるんだよね。

哲学において焼き増しは無意味パクリじゃないのよ。

あいブコメつける人って「方向性とかみたいな意味ベクトルという言葉を使ってる人は横文字使いたがりの格好つけ」と言ってる人みたいな人を性悪説的にとらえるクレーマー気質が高い人間に感じる。

ちなみに俺はベクトルという言葉を使う人は「周りがベクトルという言葉を使ってるからリアルタイム性を要求される会話でとっさに出てくる言葉ベクトルから、それをそのまま使ってる」ってだけだと思う。

2024-02-10

論理的に正しい」は正しくない理由

換言すれば命題公理が正しくないことをどう証明するかって話なんだけど、この問題に対してどうアプローチするかでその人の人間性が分かる

2023-12-12

[] 2023-12-12

無限は様々な人たちを当惑させてきた。周囲の物理世界で観察されるものはすべて有限。

観測可能宇宙原子の数でさえ、想像を絶するほど大きいとはいえ、やはり有限。

無限は本当に存在するのか?

数学はおそらく、無限とつながるための最も知性的論理的方法を与えてくれる。

数学的な無限理論は、19 世紀末ドイツ数学カントールによってほぼ独力で作成された。

自分アイデアを追求するために、カントールは途方もない勇気を示した。批判者たちに答えて「数学本質はその自由にある。」と書いたのである

数学では、選択された公理論理規則に厳密に従わなければならない。

しかし、そのルールの中においては、本当に想像力を羽ばたかせることができる。数学には独断偏見が入り込む余地はない。

カントールの考えは、無限大は数ではなく、むしろ集合の性質であるというものであった。

2 つの集合 A と B が与えられると、A から B への「写像(勝間さんじゃないですよ)」について考えることができる。

これは、 B の要素を A の各要素に割り当てるルールである

カントールによって導入された重要概念は、集合 A と B の間の1 対 1 対応である。これは、Bの各要素がAの1つの要素にのみ割り当てられるような、A から B への写像である

Aが有限数の要素 (たとえば、n) を持ち、B が別の集合である場合、B にもn要素がある場合にのみ、AとBの間に1対1の対応関係存在するという定義である。 

ここで、無限集合の概念を導入できる。これは、Aと有限集合Bの間に1対1の対応がないような集合Aである。たとえば、自然数の集合 N={1,2, 3,…}は無限集合である

ここまでの理論はかなり単純だ。しかしその後、カントールは驚くべき発見をした。互いに1対1対応していない無限の集合が存在するのである

言い換えれば、無限大にはさまざまなサイズがある。

たとえば、集合Nと実数の集合Rの間には1対1の対応がないことがわかる。

カントールの対角線論証とも呼ばれる証明があるが、これはかなり美しい証明と言われている。

そこでは実数の集合と自然数の集合の間には 1 対 1 の対応関係がないということが示されている。実数の「無限大」は自然数の「無限大」よりも「大きい」と言える。

この 2 つの間に「無限」は存在するのか? これは、数理論理学における最も深い問題の 1 つである、有名な「連続体仮説」につながる。

ログイン ユーザー登録
ようこそ ゲスト さん