はてなキーワード: 函数とは
https://x.com/LoveWithAndroid/status/1834486982485180468
今年(2025年度)の京都大学大学院理学研究科 数学・数理解析専攻の院試の問題をOpenAI o1-miniに解かせてみました。おそらくですが、合格射程圏内には入っていると思います。
京大数学教室の院試は基礎科目6問・専門科目2問(選択問題)から構成されています。今回は解析系(ルベーグ積分・函数解析)の専門科目を解かせてみました。
私自身ちゃんと採点するのはしんどいので出来ていません(なのでミスがあってもご容赦ください)が、大体
基礎科目
【1】△ 【2】○ 【3】◎ 【4】○ 【5】○ 【6】△
専門科目
【6】○ 【7】○
1. (X, 𝒯) を局所凸ハウスドルフ位相線形空間とする。
2. ℱ ⊂ X を弱コンパクト凸集合とする。
3. 各 i ∈ I (ここで I は可算または非可算の指標集合) に対して、効用汎関数 Uᵢ: X → ℝ を定義する。Uᵢ は弱連続かつ擬凹とする。
4. 社会厚生汎関数 W: ℝᴵ → ℝ を定義する。W は弱連続かつ単調増加とする。
sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)
定理: ℱ が弱コンパクトで、全ての Uᵢ が弱上半連続、W が上半連続ならば、最適解が存在する。
P: sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)
D: inf[λ∈Λ] sup[y∈X] {W((Uᵢ(y))ᵢ∈I) - ⟨λ, y⟩}
定理 (強双対性): 適切な制約想定のもとで、sup P = inf D が成立する。
∂W を W の劣微分とし、∂Uᵢ を各 Uᵢ の劣微分とする。
0 ∈ ∂(W ∘ (Uᵢ)ᵢ∈I)(y*) + Nℱ(y*)
ここで、Nℱ(y*) は y* における ℱ の法錐である。
T: X → X* を以下のように定義する:
⟨Ty, h⟩ = Σ[i∈I] wᵢ ⟨∂Uᵢ(y), h⟩
ここで、wᵢ ∈ ∂W((Uᵢ(y))ᵢ∈I) である。
⟨Ty*, y - y*⟩ ≤ 0, ∀y ∈ ℱ
L: X → X を L = T ∘ Pℱ と定義する。ここで Pℱ は ℱ 上への射影作用素である。
定理: L のスペクトル半径 r(L) が1未満であれば、最適解は一意に存在し、反復法 y[n+1] = Ly[n] は最適解に収束する。
(Ω, 𝒜, μ) を確率空間とし、U: Ω × X → ℝ を可測な効用関数とする。
定理: 適切な条件下で、以下が成立する:
sup[y∈ℱ] ∫[Ω] U(ω, y) dμ(ω) = ∫[Ω] sup[y∈ℱ] U(ω, y) dμ(ω)
今年、数学と小説に関することで「やっておけばよかった」と思ったことがふたつあった。
1つ目。
『年刊SF傑作選 超弦領域』に収録されている円城塔の短編「ムーンシャイン」に
とあるのだけど、これを読んだ時に
ここの「可換」って「可解」の間違いだよな出版社に知らせておいた方がいいかな
と考えたのだけど、ストーリーには何の影響もないディテールだしすぐ知らせる必要もないなと放おって忘れていたら、
今年出た伴名練 編『日本SFの臨界点[恋愛篇] 死んだ恋人からの手紙』に
「ムーンシャイン」が収録されていてこの部分がそのままだった。
2つ目。
奥泉光の長編小説『雪の階』で、数学を愛好する主人公笹宮惟佐子に関して
微積分の初歩を終えたばかりの惟佐子には手が出せそうになかった。
と描写されるところ(一章 七)があるのだけど、その直後に
初歩の参考書からはじめて高木貞治『代数学講義』、ミハエル・グラッスス『高等数学入門』、竹内端三『函数論』と云った著作を惟佐子は独習し、いまは山畑氏から借りた解説書で解析学も少しずつ勉強をはじめていた。
竹内端三『函数論』は上巻(函数論. 上巻 - 国立国会図書館デジタルコレクション)だけでも関数論(=複素関数論)のかなり詳しい部類の本で、
下巻(函数論. 下巻 - 国立国会図書館デジタルコレクション)までいくと楕円関数論について詳しく扱っているような本なので、
それを「独習し」というのは「微積分の初歩を終えたばかり」という描写と齟齬をきたしていると思う。
竹内端三『函数論』は現在でもわりと読まれていて数年前に復刊もされている本なので、誰も気にしないにしても記述を修正した方がいいじゃないかな、
と思うだけ思いながら特に何もしていなかったら、
つい先日『雪の階』が文庫化されて上にあげた部分はそのままだった。
変更されていたかは分からないけど、一応どこかに言っておけばよかったとちょっと後悔した。
そもそも、本のミスや誤字脱字を見つけた時どのくらいの人が指摘・報告をしているのだろう?と思った。おわり。
現在発売中の数学セミナー2021年1月号の特集が「SFと数理科学」で、
円城塔による総論で数学との絡みのある小説をいろいろあげていて、
どうせほとんどの読者は高校数学さえ理解していないのだから、何を解説したって数学の本質的な理解は無理なのかもしれない
彼らには、以下はどれも同じに見えている
虚二次体の有限次Abel拡大は、1のべき根と、楕円モジュラー函数の特殊値と、虚数乗法を持つ楕円曲線の等分点の座標で生成される。
Xを位数q=p^mの有限体F_q上のn次元非特異射影代数多様体、Y=X×_{F_q}(F_qの代数閉包)とすると、
#X(F_q) = ∑[i=0, 2n](-1)^i Tr(F_q, H^i(Y, Q_l))。
Cをダークマターの作用を持つN次元クリスタル、Xをそのアトラクターとすると、XからCへの次元変換Fは、固有なファクター方程式
F = F_1 ⊕ ... ⊕ F_N
を満たす。