はてなキーワード: 質量分析とは
酸素が重いから回転が遅い、というのは違うからね。酸素より重いランタンのほうが酸素より速いからね。回るのは原子核じゃなくて核スピンだからねホントはね。わかりにくいから原子核って書いたんだと思うけど一応ね。核スピンは、そうねぇ、小さな磁石だと思ってくれてもそんなに間違った理解ではないよ。
で、NMRの原理のところだけど、現代でラジオ波の吸収を使って調べることはほとんどないんじゃないかな。連続波(continuous wave; CW)法で検出にQメータ使っている人なんてほとんどいないでしょ。いまは(といってもだいぶ昔からだけど)パルス法が主流で、これは強く短いラジオ波パルスを照射することで広帯域の核スピンを励起して一度に信号を取るとても効率の良い方法だよ。
え、それって吸収を調べているんじゃね?って思うかもしれないけど、ちょっと違うのね。本質は、核スピンが集合してできた巨大な磁石(巨視的磁化とよんでます)なのね。この巨視的磁化はコイルの中に置かれています。
この巨視的磁化は超伝導磁石の作る強磁場の方向に通常は向いているんだけど、コイルによりラジオ波パルスを照射されるとパタンと倒れるのね。これが励起状態です。
で、励起されたらまた強磁場の方向に向こうとするんだけど、このとき元増田が書いてくれたように、置かれた環境や結合に依って違う回転スピードでぐるぐる回りながら戻っていくのね。
この回っている巨視的磁化の周りにはコイルがあって、コイルの中で磁石が動くとどうなるかというと、ファラデーの電磁誘導の法則ってのを覚えている人がいると思うんだけど、電圧が発生して電流が流れるのね。で、この誘導された電流は巨視的磁化の周波数の交流で、こいつを検出器で検出しているというわけ。
この巨視的磁化ってのが本質だと書いたけど、ホントのホントはスピンが揃っていること……コヒーレンスなのね。コヒーレンスって可干渉性とか訳されたりするけど、この時間的にも空間的にも揃っていて、しかもその持続時間が非常に長いことがNMRを他の測定法とは一線を画す面白い測定法にしているよ。
たとえば、炭素の巨視的磁化と水素の巨視的磁化が干渉して結合状態が分かったりするよ。あと、人間が作るラジオはパルスもかなり干渉性の高い電波で、このラジオ波パルスの打つタイミングや長さや強度や打つ方向を工夫すると、巨視的磁化を操ることができて、欲しい情報だけを引き出すことができたりするよ。こういう一連のパルスをパルスシーケンス(パルスプログラム)と呼んでいるんだけど、このパルスシーケンスを開発している人達もいるよ。ほんとにプログラムするようにできたりするよ。そのためには量子力学、特に密度行列の時間発展を計算できる必要があるよ。
あとは量子コンピューターにも使われようとしたこともあるよ。こともある、とか書くと怒られるかもだけど。IBMが核スピンを使って初めて量子コンピューターを実証したよ。でも今の主流ではないよ。
超伝導磁石に関しては、強い磁場を生み出すことも重要だけど、空間的・時間的に均一であることも重要だよ。NMRって特に溶液NMRだと10^-9の精度での磁場の均一性が求められるよ。時間で変動しても、場所で違っても信号がなまってしまって困るのね。
そうそう、超伝導は理学系が多くて、超電導は工学系が多く表記に使っているよ。どうでもいい豆知識だね。
で、いま世界最強の溶液NMRにも使える超伝導磁石(と電磁石のハイブリッド)はアメリカはフロリダ州タラハシーにある45 Tマグネットだよ(https://nationalmaglab.org/magnet-development/magnet-science-technology)。水素の共鳴周波数でいうと、ええと、1.9 GHzで、もはやラジオ波じゃなくてマイクロ波だね。
NMRの弱点は、感度がめちゃくちゃ悪いことだよ。質量分析とかタンパク質ちょびっとでいいけど、NMRだと必要量が桁で変わるよ。タンパク質とか作るのめっちゃ大変だから、そのへんはNMRの泣き所だよ。感度向上は古くて新しいNMRの研究テーマだよ。今はいろいろな方法があってね……(以下略)。
1
判 決
同 松 田 誠 司
同 清 原 直 己
同 中 村 哲 士
同 富 田 克 幸
同 夫 世 進
同 有 近 康 臣
同 前 澤 龍
同 蔦 田 璋 子
被 告 パ ナ ソ ニ ッ ク 株 式 会 社
同 速 見 禎 祥
主 文
1 原告の請求を棄却する。
事 実 及 び 理 由
2
第1 請求
特許庁が無効2012-800008号事件について平成26年6月24日
にした審決を取り消す。
第2 事案の概要
被告は,平成22年8月10日に出願(特願2010-179294号。
平成15年12月22日に出願された特願2003-425862号の分割
出願。優先日同年8月5日)(以下,この優先日を「本件優先日」という。)
され,平成23年12月9日に設定登録された,発明の名称を「帯電微粒子
水による不活性化方法及び不活性化装置」とする特許第4877410号
(以下「本件特許」という。設定登録時の請求項の数は6である。)の特許
権者である。
原告は,平成24年1月31日,特許庁に対し,本件特許の請求項全部に
ついて無効にすることを求めて審判の請求(無効2012-800008号
事件)をした。上記請求に対し,特許庁が,同年8月2日,無効審決をした
ため,被告は,同年9月10日,審決取消訴訟を提起した(知的財産高等裁
判所平成24年(行ケ)第10319号)。その後,被告が,同年12月7
日,特許庁に対し,訂正審判請求をしたことから,知的財産高等裁判所は,
平成25年1月29日,平成23年法律第68号による改正前の特許法18
1条2項に基づき,上記審決を取り消す旨の決定をした。
被告は,平成25年2月18日,本件特許の請求項1及び4を削除し,請
求項2を請求項1と,請求項3を請求項2と,請求項5を請求項3と,請求
項6を請求項4とした上で各請求項につき特許請求の範囲の訂正を請求した
(以下「本件訂正」という。)。特許庁は,同年5月8日,本件訂正を認めた
上で無効審決をしたため,被告は,同年6月14日,審決取消訴訟を提起し
(知的財産高等裁判所平成25年(行ケ)第10163号),知的財産高等
3
裁判所は,平成26年1月30日,上記審決を取り消す旨の判決をした。特
許庁は,同年6月24日,「訂正を認める。本件審判の請求は,成り立たな
い。」との審決をし,その謄本を,同年7月3日,原告に送達した。
原告は,同年7月31日,上記審決の取消しを求めて,本件訴えを提起し
た。
本件訂正後の本件特許の特許請求の範囲の記載は,次のとおりである(甲3
4,39,40。以下,請求項1に係る発明を「本件訂正特許発明1」,請求
項2に係る発明を「本件訂正特許発明2」などといい,これらを総称して「本
件訂正特許発明」という。また,本件特許の明細書及び図面をまとめて「本件
特許明細書」という。)。
請求項1
「大気中で水を静電霧化して,粒子径が3~50nmの帯電微粒子水を生成
し,花粉抗原,黴,菌,ウイルスのいずれかと反応させ,当該花粉抗原,黴,
菌,ウイルスの何れかを不活性化することを特徴とする帯電微粒子水による
不活性化方法であって,前記帯電微粒子水は,室内に放出されることを特徴
とし,さらに,前記帯電微粒子水は,ヒドロキシラジカル,スーパーオキサ
イド,一酸化窒素ラジカル,酸素ラジカルのうちのいずれか1つ以上のラジ
カルを含んでいることを特徴とする帯電微粒子水による不活性化方法。」
請求項2
「大気中で水を静電霧化して,粒子径が3~50nmの帯電微粒子水を生成
し,花粉抗原,黴,菌,ウイルスのいずれかと反応させ,当該花粉抗原,黴,
菌,ウイルスの何れかを不活性化することを特徴とする帯電微粒子水による
不活性化方法であって,前記帯電微粒子水は,大気中に放出されることを特
徴とし,さらに,前記帯電微粒子水は,ヒドロキシラジカル,スーパーオキ
サイド,一酸化窒素ラジカル,酸素ラジカルのうちのいずれか1つ以上のラ
4
ジカルを含んでおり,前記帯電微粒子水は,粒子径3nm未満の帯電微粒子
水よりも長寿命であることを特徴とする帯電微粒子水による不活性化方
法。」
請求項3
「霧化部に位置する水が静電霧化を起こす高電圧を印加する電圧印加部を備
え,当該電圧印加部の高電圧の印加によって,大気中で水を静電霧化して,
粒子径が3~50nmであり,花粉抗原,黴,菌,ウイルスの何れかと反応
させて,当該花粉抗原,黴,菌,ウイルスの何れかを不活性化するための帯
電微粒子水を生成し,前記帯電微粒子水は,室内に放出されることを特徴と
する不活性化装置であって,前記帯電微粒子水は,ヒドロキシラジカル,ス
ーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのいずれか1
つ以上のラジカルを含んでいることを特徴とする不活性化装置。」
請求項4
「霧化部に位置する水が静電霧化を起こす高電圧を印加する電圧印加部を備
え,当該電圧印加部の高電圧の印加によって,大気中で水を静電霧化して,
粒子径が3~50nmであり,花粉抗原,黴,菌,ウイルスの何れかと反応
させて,当該花粉抗原,黴,菌,ウイルスの何れかを不活性化するための帯
電微粒子水を生成し,前記帯電微粒子水は,大気中に放出されることを特徴
とする不活性化装置であって,前記帯電微粒子水は,ヒドロキシラジカル,
スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのいずれか
1つ以上のラジカルを含んでおり,前記帯電微粒子水は,3nm未満の帯電
微粒子水と比較して長寿命であることを特徴とする不活性化装置。」
3 審決の理由
審決の理由は,別紙審決書写しのとおりである。本件訴訟の争点となる部
分の要旨は,① 本件訂正特許発明の粒子径の記載はいずれも明確である
(特許法36条6項2号の要件を満たす。),② 本件訂正特許発明の粒子径
5
に関し,発明の詳細な説明に記載されていないとすることはできない(同項
1号の要件を満たす。),③ 本件訂正特許発明の静電霧化の意味は明確であ
るほか,本件訂正特許発明の静電霧化手段に関し,発明の詳細な説明に記載
されていないとすることはできないし,発明の詳細な説明には,当業者が本
件訂正特許発明の実施ができる程度に明確かつ十分な記載がなされていない
とすることもできない(同項1号及び2号並びに同条4項1号の要件を満た
す。),④ 本件訂正特許発明1及び3はいずれも,I.Wuled LEN
GGOROら「静電噴霧法による液滴およびイオンの発生」粉体工学会誌V
ol.37,No.10(日本,2000年),753~760頁(甲10。
以下「甲10」という。)記載の発明(以下,審決が本件訂正特許発明1と
対比するに当たり認定した甲10記載の発明を「甲10発明1」と,本件訂
正特許発明3と対比するに当たり認定した甲10記載の発明を「甲10発明
2」という。)に,特開平11-155540号公報(甲5。以下「甲5」
という。),特開平7-135945号公報(甲6。以下「甲6」という。)
及び「ラジカル反応・活性種・プラズマによる脱臭・空気清浄技術とマイナ
ス空気イオンの生体への影響と応用」(株)エヌ・ティー・エス発行,20
02年10月15日,218~231頁,363~367頁,389~39
2頁(甲7。以下「甲7」という。)に記載の技術を組み合わせても,当業
者が容易に発明できたものではない(同法29条2項の規定に反しない。),
⑤ 本件訂正特許発明1及び3はいずれも,特開2002-203657号
公報(甲11。以下「甲11」という。)記載の発明(以下,審決が本件訂
正特許発明1と対比するに当たり認定した甲11記載の発明を「甲11発明
1」と,本件訂正特許発明3と対比するに当たり認定した甲11記載の発明
を「甲11発明2」という。)に,甲5ないし7記載の技術を組み合わせて
も,当業者が容易に発明できたものではない(同上),というものである。
上記 ④の結論を導くに当たり,審決が認定した甲10発明1及び2の内
6
容,甲10発明1と本件訂正特許発明1及び甲10発明2と本件訂正特許発
明3との一致点及び相違点は以下のとおりである。
ア 甲10発明1及び2の内容
甲10発明1
「液体を静電噴霧して,粒子径が数nmで幾何標準偏差が1.1程度の
甲10発明2
「導電性の細管の先端に位置する液体が静電噴霧を起こす高電圧を印加
する高圧電源を備え,当該高圧電源の高電圧の印加によって,液体を静
電噴霧して,液滴径が数nmで幾何標準偏差が1.1程度のイオンを含
む液滴を生成する静電噴霧装置」
一致点
「液体を静電霧化して,粒子径が3~50nmの帯電微粒子の液滴を生
相違点
a 相違点10a
「本件訂正特許発明1は,水を静電霧化して帯電微粒子水を生成し,
帯電微粒子水を花粉抗原,黴,菌,ウイルスのいずれかと反応させ,
当該花粉抗原,黴,菌,ウイルスの何れかを不活性化する不活性化方
法であるのに対して,甲10発明1は,帯電微粒子の液滴が,花粉抗
原,黴,菌,ウイルスのいずれかと反応し,それらの何れかを不活性
b 相違点10b
「本件訂正特許発明1では,大気中で水を静電霧化し,帯電微粒子水
は,室内に放出されるのに対し,甲10発明1では,大気中で液体を
7
静電霧化するのか,また,液滴が室内に放出されるのか明らかでない
点」
c 相違点10c
「本件訂正特許発明1では,帯電微粒子水は,ヒドロキシラジカル,
スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのい
ずれか1つ以上のラジカルを含んでいるのに対して,甲10発明1で
は,帯電微粒子の液滴が,そのようなラジカルを含んでいるか不明で
ある点」
一致点
「霧化部に位置する液体が静電霧化を起こす高電圧を印加する電圧印加
部を備え,当該電圧印加部の高電圧の印加によって,水を静電霧化して,
相違点
a 相違点10d
「本件訂正特許発明3は,水を静電霧化して帯電微粒子水を生成し,
花粉抗原,黴,菌,ウイルスの何れかと反応させ,当該花粉抗原,黴,
菌,ウイルスの何れかを不活性化する帯電微粒子水による不活性化装
置であるのに対し,甲10発明2は,帯電微粒子の液滴が,花粉抗原,
黴,菌,ウイルスのいずれかと反応し,それらの何れかを不活性化す
b 相違点10e
「本件訂正特許発明3では,大気中で水を静電噴霧し,帯電微粒子水
は,室内に放出されるのに対し,甲10発明2では,大気中で液体を
静電霧化するのか,また,液滴が室内に放出されるのか明らかでない
点」
8
c 相違点10f
「本件訂正特許発明3では,帯電微粒子水は,ヒドロキシラジカル,
スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのい
ずれか1つ以上のラジカルを含んでいるのに対し,甲10発明2では,
前記 ⑤の結論を導くに当たり,審決が認定した甲11発明1及び2の内
容,甲11発明1と本件訂正特許発明1及び甲11発明2と本件訂正特許発
明3との一致点及び相違点は以下のとおりである。
ア 甲11発明1及び2の内容
甲11発明1
「空気中で水を静電霧化して,0.001μm(1nm)程度の大きさ
である,小イオンを生成し,集塵する方法であって,前記小イオンは,
室内に供給され,さらに,前記小イオンは,水の分子に極小イオンが結
合して水分子のクラスターを核としている,小イオンによる集塵方法」
甲11発明2
「放電電極を兼ねる水管の先端から滴下する水滴がコロナ放電により微
細な水滴となって霧散する高電圧を印加する高圧電源とを備え,該高電
圧の印加によって,空気中で水を静電霧化して,0.001μm(1n
m)程度の大きさである,集塵するための小イオンを生成し,前記小イ
オンは室内に供給される装置」
一致点
「大気中で水を静電霧化して,帯電微粒子水を生成し,室内の空気を清
浄化する帯電微粒子水による方法であって,前記帯電微粒子水は,室内
相違点
9
a 相違点11a
「本件訂正特許発明1は,帯電微粒子水の粒子径が3~50nmであ
るのに対して,甲11発明1は,小イオンの大きさが1nm程度であ
る点」
b 相違点11b
「本件訂正特許発明1は,帯電微粒子水を花粉抗原,黴,菌,ウイル
スのいずれかと反応させ,当該花粉抗原,黴,菌,ウイルスの何れか
を不活性化する不活性化方法であるのに対して,甲11発明1は,小
c 相違点11c
「本件訂正特許発明1では,帯電微粒子水は,ヒドロキシラジカル,
スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのい
ずれか1つ以上のラジカルを含んでいるのに対して,甲11発明1で
は,小イオンがそのようなラジカルを含んでいるか不明である点」
一致点
「霧化部に位置する水が静電霧化を起こす高電圧を印加する電圧印加部
を備え,当該電圧印加部の高電圧の印加によって,大気中で水を静電霧
化して空気を清浄化するための帯電微粒子水を生成し,前記帯電微粒子
相違点
a 相違点11d
「本件訂正特許発明3では,帯電微粒子水の粒子径が,3~50nm
であるのに対して,甲11発明2では,小イオンの大きさが1nm程
度である点」
b 相違点11e
10
「本件訂正特許発明3では,帯電微粒子水が,花粉抗原,黴,菌,ウ
イルスのいずれかと反応させ,当該花粉抗原,黴,菌,ウイルスの何
れかを不活性化するためのものであるのに対して,甲11発明2は,
c 相違点11f
「本件訂正特許発明3では,帯電微粒子水が,ヒドロキシラジカル,
スーパーオキサイド,一酸化窒素ラジカル,酸素ラジカルのうちのい
ずれか1つ以上のラジカルを含んでいるのに対して,甲11発明2で
は,小イオンがそのようなラジカルを含んでいるか不明である点」
第3 原告主張の取消事由
以下のとおり,審決には,粒子径に関する明確性要件の判断の誤り(取消事
由1),粒子径に関するサポート要件の判断の誤り(取消事由2),静電霧化手
段に関するサポート要件及び実施可能要件の判断の誤り(取消事由3),甲1
0を主引例とする進歩性の判断の誤り(取消事由4)及び甲11を主引例とす
る進歩性の判断の誤り(取消事由5)があり,これらの誤りは審決の結論に影
審決は,本件訂正特許発明における「粒子径が3~50nm」とは,凝集
していない個々の粒子のほぼ全てが粒子径3~50nmの範囲に分布してい
しかし,審決は,甲10において静電霧化により生成する液滴の粒径分布
が非常に狭く単分散性が高いことを前提としているが,本件特許の特許請求
の範囲には,粒子のほぼ全てが上記範囲内にあるか否かは何ら記載されてい
ない。
そして,「粒子径が3~50nm」と幅をもって表現された場合に,その
上限,下限の値が,平均粒子径の幅を示しているのか,D50(頻度の累積
11
が50%になる粒子径〔メジアン径〕)の幅を示しているのか,ピーク値
(最大ピークとなる最頻出値)の幅を示しているのか,様々な解釈があり得
るところ,本件特許明細書には,どのような幅を示しているのかの説明はさ
れておらず,本件特許明細書の記載を参酌しても,上記の幅は不明確である。
現に,本件特許明細書の記載を参酌した場合,粒子径の範囲の解釈につい
ては,その記載箇所に応じて,ピーク値の幅と解釈したり(【0024】,粒
子のほぼ全てが範囲内にあると解釈したり(【0038】)する余地があり,
そうすると,「粒子径が3~50nm」との記載については,本件特許明
細書の記載を参酌しても,複数の意味に解釈される余地があるから,本件特
審決は,本件特許明細書【0013】,【0024】及び【0052】の記
載等から,帯電微粒子水の粒子径の上限は,粒子の空間内への拡散性や人の
肌への浸透性の観点から100nmが好ましく,抗原の不活性化の作用や空
気中の湿度に影響を与えないという観点から,50nmが好ましいこと,ま
た,粒子径の下限は,粒子の寿命と抗原の不活性化の作用の観点から3nm
が好ましいことが把握されるから,本件特許明細書に実施例として示された
ものが,20nm付近をピークとして,10~30nmに分布を持つ帯電微
粒子水のみであったとしても,粒子のほぼ全てが粒子径10~30nmの範
囲に分布している帯電微粒子水であれば,室内への拡散性が良いことや,長
寿命であること,抗原の不活性化の作用を奏しつつ,空気中の湿度調整に影
響を与えない等の作用効果を奏することは,当業者が明細書及び図面の記載
12
そして,「粒子径が3~50nm」の意味はピーク値の幅と解釈する余地
が十分にあり,そのように解釈した場合,本件特許明細書には3~50nm
のうちの20nm付近の粒子径についてしか長寿命化と不活性化効果が示さ
れていないのであるから(【0042】,【0045】~【0048】),かか
る実施例を本件訂正特許発明の全体まで拡張ないし一般化することはできな
い。
「粒子径が3~50
nm」との数値は,本件訂正特許発明の課題を解決する作用効果に直結する
重要な数値であるところ,本件特許明細書の実施例には,粒子径3~10n
m未満の部分と粒子径30nm~50nmの部分のいずれについても,長寿
命化という効果を裏付けるデータの記載はない。また,3nm及び50nm
をそれぞれ下限値及び上限値とする不活性化効果については記載されている
ものの,それを裏付けるデータも記載されていないし,帯電微粒子水の長寿
命化についても記載されていない。
したがって,本件特許明細書の具体的な実施例をもって,「粒子径が3~
50nm」の全体についてまで長寿命化と不活性化の各効果が存在するもの
と理解することはできない。
被告は,粒子径3~50nmという数値限定につき,帯電微粒子水の粒子
径を本件発明の課題目的に沿って最適化したものであって,当該上限,下限
値が課題目的を達成し,顕著な作用効果を奏する臨界的意義を有する数値と
いうわけでないから,具体的な測定結果をもって裏付けられている必要はな
い旨主張する。
しかし,本件訂正特許発明の出願時の技術常識に照らすと,本件訂正特許
発明の特徴的な部分は,静電霧化で発生させて殺菌等に用いるラジカルとし
13
て,粒子径が3~50nmの帯電微粒子水に含まれたラジカルを用いる点に
あり,かつ,上記粒子径は,長寿命化と不活性化の双方の技術的課題達成の