「フューエル」を含む日記 RSS

はてなキーワード: フューエルとは

2023-10-08

中田あっちゃんev動画見た

一度乗ればわかるけど車載プログラムの塊なのでその作り込みが非常に重要

あん田舎でみんなで残業頑張ろう!なんていってる会社で優秀なプログラマーが働きたいとおもうだろうか。

自動運転にはev絶対に適しているのでどうなってもこれからそちらに進化していくはずなのに水素エンジンフューエルバッテリーなどというアホなシステム投資してしまった。水素ステーションあれ一基五億円だぞ。フツーのガソスタは1億で作れる。税金で作った。まさに無駄遣い。

金はまだいいが一番は時間無駄したこと

しょうもないシステム開発しているうちにライバルはもうすでに2周は先に行っている。

日本が負けたあと、愛知三重広島がどうなるのかこの目で見てみたい。

凄まじい光景になるだろう。

2023-06-14

ソロ男性のジェントル

腹にグサリと来た………。気をつけていたつもりだけど、改めて反省する。俺は、40代おひとりさま男性だ。彼女どころか女友達もいないし、女性と手を繋いだことさえない、いわゆる弱者男性別に何も特別なことじゃない。

あなた

この日記を今スクロールしてる、あなただって弱者男性でしょ。ならば共感してくれると思う。

❶ 俺は昔バックパッカーだったので、小型のマルチフューエルストーブチタンのコッヘルを携行してキャンプに行くことがある。ただし、大人になってからはゆったりとした大型のテントパイプチェアを持ってく。で、近くに女性ソロキャンパーと思しき人が設営してるな… と思ったら、俺がストーブ類を出した瞬間に速攻で撤収して行った………。なるほど、この装備では多人数調理はやりにくい。他の同サイズテント夫婦だが、ソロ男性の俺には当然女性の同伴はない。それを確認したんだ……。

ジェントル❶・ソロ男性は一人だとすぐわかる装備で。

❷ 夜中の電車漫画スクロールしてると、ガタガタと音がした。ふと顔を上げると隣に座ってたはずの女性車両を移動しようと焦ってドアを開けようとしてた。そのときトイレに行きたいんだろう……と納得してたけど。電車の車内は最初こそ人はチラホラいたが、だんだん下車して行き、いつの間にか俺と彼女の二人になってた…………。

ジェントル❷・ソロ男性電車に乗るなら、人数管理に注意して。

❸ 数年後、夜中にマンションエレベーター女性と二人きりになった。すると彼女が突然ボタンを連打し始めた。ビックリしたけどすぐ降りて走っていったので、きっと部屋バレしたくなかったんだろう。夜中に鉢合わせ男性に部屋番号なんて知られたくないだろうから

ジェントル❸・ソロ男性女性と二人きりにならないで。

弱者男性への一般的アドバイスに素直に従って、ヒゲ鼻毛は常に剃り、夏の終わる頃に服は煮沸消毒している。それでもソロ男性電車ソーシャルディスタンスが発生する——…電車で隣に座ってた女の子がそっと腰を浮かして離れる現象は、よくある。今回のアドバイスが優れているのは、「男である自分女性からゴキブリハイエナを足して二で割ったような存在に見えてるはず」と自省することで、これらのジェントルただちに導出される点だ。他人からどう思われてるか? を意識すると自然と取るべき行動がわかる。俺も自室でゴキブリに遭うと真っ青になるよ。キモいはただの感想じゃなくて、キモい心理的安全性を奪われた悲鳴 なんだな。勇気を出して教えてくれた彼に、ありがとうと言いたい。

余裕がある女性ソロ男性弱者男性諸氏は、普段気を付けてるあなたジェントル(男として女性を脅かさないように注意してること)を教えてほしい。

2023-02-20

anond:20230220085712

まさに フェイル・セーフ記者バッシングのために引っ張りだされたのに

逆にフェイルなんだから失敗だろ・・・🤔 とか言質取られてたよな

ヤフコメで誰かが言ってたんだけど

フューエル・セーフ

良いんじゃないか? 燃料を守るんだから意味にもかなってるし

2022-11-03

anond:20221103221027

缶詰めの空き缶とかで灯油ランプを作って燃やす

な、なるほど…

以前、俺は山屋だったのでマルチフューエルストーブを持っているんだけど。

それを利用すると結局ススがすごい事になりそうだな… と思っていた。

しかし全部を自作して、しか調理に使わない、ただ眺めるだけ、ってのはすべての問題点解決している。

2022-01-31

anond:20220131120447

次世代船として重油炊きに代えてLNG炊き、アンモニア炊き、水素炊き

複数の燃料が使用可能デュアルフューエル船等が開発されつつあるけど

どれが本命になるか分からないんでオペレーター側も様子見してる状況やね

2020-02-10

anond:20200209170643

ICE効率の点ではEVに遥かに及ばないよ。印象だけでは語るとデマになるので、少し計算した方が良い。

エンジン (ICE: internal combustion engine) 効率

追記: 過小評価していたので熱効率を上げました)

原油⇒精製(90%)⇒輸送(98%)⇒エンジン(30-40%)⇒変速機(80-90%)

=20%-35%程度

効率向上の限界

一番の問題は、熱機関は最良でもカルノーサイクルの壁を超えられないこと。つまり入力と出力の温度差による限界が来るわけ。

エンジンの素材は金属なので、良くても数百度かにしかできないわけで、予算度外視でどんなに効率をよくしても量産車で60%に至ることはありえない。

エンジンアルミか鉄なわけで、そこまで高温にできない。それで30-40%止まりと言うわけ。最近50%近いエンジンができたーとか言うニュースもあるが、もう熱力学上、天井は見え始めている。これは物理学なので、どうしようもならない。

(ちなみに、燃焼温度を上げると今度はNOxなどの問題顕在化してくる。そのため、むしろEGRなどにより温度を下げるのがトレンドエンジン開発はいろいろなトレードオフなのだ。)

ディーゼルエンジン効率比較的高く、CO2排出ガソリンエンジンよりも少ないとされるが、NOx/PMなどの排出が多い問題がある。NOxについてはマツダが頑張って尿素SCRなしのエンジン作ったけど、結局、PMについては、DPFを用いて微粒子を捕獲している。そのDPFの煤焼き運転必要だったりするので、その分の燃料は無駄になるわけだよね。

で、エンジン車の問題として、トルクバンドが上のほうにあるので、クラッチトルクコンバーター等と変速機が必ず必要となる。その際にロスが出てしまう。AT/MT/DCTは段数が少ないとパワーバンドを生かしきれない。段数が多いと重い。CVT滑るし、CVTルードは温まるまで粘度が高くてロスになる(ダイハツCVTサーモコントローラーとかで頑張ってるけど)。

エンジン効率への批判について

エンジンの熱効率50%に達したという記事JSTの「革新的燃焼技術」)で反論する方がいらっしゃるが、そのエンジン実験室の563cc単気筒エンジンだ。もちろん単気筒なんて自動車では振動などで使い物にならないから、最低でも3気筒からとなる。そうしたときに、気筒が増えて動弁系などのフリクションの発生によって効率は下がるはずなので、そのまま量産車に適用することは難しい。実用車では気筒数増加による動弁系の負荷、オルタネーターなど補機系の負荷などもかかってくることも頭に入れておきたい。

日産が45%のエンジンを開発しているとの記事もあるが、これはe-Powerの「発電専用」エンジンだ。ハイブリッドなので、こういう芸当が可能だ。

45%からは数%上げるだけでも相当血のにじみ出るような開発の労力がいるだろう。

燃焼温度についての批判

燃焼温度アルミや鋳鉄の融点よりも遥かに高いと言う指摘があった。その通りです。

しかし、熱力学説明たかっただけで、例えば入口・出口の温度差を数万度にしたならば、熱効率はかなりのものとなるが、そんなものは物性的不可能ということを示したかった。

なので、燃焼温度は限られるという意味

BEV (Battery EV) 効率

原油火力発電(超臨界発電) 50-60%⇒送電 (95%) ⇒バッテリへ充電(90%)⇒変換(96%)⇒モーター(95%)

=39-45%

効率アップの方法

PHEV, BEV場合、上に示したうちで一番効率の悪い「火力発電」の部分を再生エネルギーや水力に転嫁することで、CO2削減を目指せる。もちろん、原発にしてもCO2は減らせる。

なお日本火力発電所のSOx/NOx排出海外に比べてもとても少なく、優秀である

発電所の部分では、現状でも50-60%の効率は稼げる。なぜ熱機関なのにここまで効率が出せるかと言うと、巨大なプラントで高温に耐えるコストの高いタービンを回してるから

それによって熱機関効率が高められるから。車のエンジンは小さくてスケールメリットが働かないよね。でも発電所レベルなら巨大で、コストも充分かけられるのでこう言う芸当ができる。

で、電気輸送に関しては送電線なので一度つなげたらしばらくはCO2を出さない。送電効率も超高圧送電(100万ボルト以上)によって高まっている。

また、インバーターとかモーターに電気を流す部分はパワーデバイス(GaN等)の発展によってどんどん効率が上がっている。

なお、モーターのトルク特性としてエンジン車のように変速不要のため、クラッチトルコン変速機などによるロスはない。将来、インホイールモーターが実用化されれば、モーター→タイヤへの伝達効率さらに上昇する。

回生

ちなみに、xEV回生充電もできるために、ブレーキ時に運動エネルギーICEほど熱に変わらない。

(一方ICEエンジンブレーキを使ったとしてもエネルギーに変えているわけではないので(多少オルタネータの充電制御は入るが)、ブレーキ時には運動エネルギーを熱にしてしまう。せっかく石油を燃やして運動エネルギーを得たのに、そのエネルギーを回収しないで熱に変えるわけ。)

まあxEV回生できるとはいえ回生時にパワーデバイスとかの充電ロスがあるから、実はコースティング回生も何もしない)で空走した方が距離を稼げる。なので、前の信号が赤にかわったときEVに関していえば、ブレーキも何も踏まないで空走状態を維持し、空気抵抗だけで0kmにするのが一番効率が高い。まあ、そんなことしていたらノロノロすぎてウザがられるので、妥協点として回生ブレーキを使ってちょっとはロスするけど、エネルギーを回収しながら止まるってことだね。

ICEだと、エンジンブレーキ積極的に使って、ブレーキを踏まない運転を心がければ良い。やってはいけないのは、Nに入れて空走すること。Nに入れるとエンジンアイドリングを維持するために燃料を消費する。ギアを入れたままエンジンブレーキをかけると、その間は燃料噴射をやめても回転が維持できるので、エンジンは燃料噴射をやめて、実質消費はゼロとなる。)

BEV製造時の負荷は?

製造CO2

バッテリーの製造時の負荷は確かに高い。しかし、製造には電気を使っているので、電力構成によりCO2排出は変わる。つまりグリーンエネルギーを使えば問題なくCO2を減らせると言うこと。

なお id:poko_penマツダのWell-to-Wheel理論を持ち出しているが、あれば古い時代バッテリ製造時のCO2データを使っていて、CO2排出過大評価している。最近テスラLi-ion電池工場では、再エネを利用して製造しているのでCO2は少なくできる。こうした、製造時のCO2排出問題工場や電源構成アップデートしていけば減らせる問題だ。

マツダはBEVよりもICE派で、SPCCI(圧縮着火)とかで頑張ってるからバイアスがかかってるのは仕方ないと思うね。私は内燃機関デザイン周りで頑張るマツダは大好きだけど、SKYACTIV-Xが思ったよりも微妙だったから株売っちゃったわ。)

リチウム採掘

Li-ion電池10%含まれリチウムは、採掘時に水を大量に使ったりする問題はある。ただ、これは「製造時」に限った話であり、内燃機関を使うたび、原油のために油田をあちこち掘り返したり、オイルタンカー座礁して原油を撒き散らしたりするのに比べれば遥かにマシというものだろう。

あと、専門外だけど、海水から抽出する技術研究中とか。

コバルト貴金属

xEVには必要となる貴金属類には依然として供給リスクとか採掘時の「児童労働」とかの問題を孕んでいる。ここら辺は全世界的に解決するしかなさそう。需要が増えれば、世界の目がこう言う問題に向くはずなので、我々技術者はそれを期待するしかない。

地域によるCO2排出量の差

例えば沖縄石炭火力の比率が高いため、EV効率を持ってしてもCO2排出HVとかより高くなる。しかし、それ以外の都道府県ではICEよりBEVの方がCO2が低い。原発が動いていない現時点でもね。

その他xEVとBEVとの比較

HV, PHEV

PHEVはもちろんICEより遥かにCO2を出さないが、BEVには勝てない。ただ、電力構成によっては逆転もありうるが、ほとんどの都道府県ではBEVの方がCO2を出さない。

燃料電池車 (FCEV)

(追記: anond:20200211034316 に FCEV vs BEV効率比較を書いた)

燃料電池車に関していえば、無用の長物と言える。水素製造する場合にも電力が必要だが、まあこれを再エネで行ったとしても、水素輸送タンクに注入する際の水素圧縮時のロスは非常に大きい。その圧縮の際に再エネを使ったとしても、結局そのエネルギーでBEVを充電した方が効率がいいのだ。

そもそもBEVならば、送電線さえあればいいわけで、わざわざ水素のように輸送する必要がない。

また燃料電池化学反応なので、アクセルレスポンスが遅いと言う欠点があり、反応のラグを補うために燃料電池車には結局バッテリーが積まれている。

ただ、航続距離は長いために、俺は現代におけるタクシーとかのLPG車みたいに細々と残るとは思う。航続距離重要トラックバスタクシーなどには燃料電池が使われるかもしれない。

効率以外にも、めんどくさい高圧タンクの法定点検とか、割と問題は多い。水素ステーションは可燃性の水素を貯蔵するわけだからEV充電スタンドよりも法的なめんどくささがあるのも確か。

水素ロータリー

これは燃料電池車より論外。カルノーサイクルに縛られてしまうので、電気分解よりも効率が悪くなる。水素の使い方としては燃料電池よりも悪い。

PHEV, BEVと再エネ

再エネは不安定と言われる。確かに自然相手なので、予測も難しい。しかし将来的にEVが普及すれば、EVバッファとして利用することで、不安定さを吸収しグリッドを安定させられる。

これは再エネを導入する動機にもなる。職場に着いたらEVCHAdeMOを挿しておいて、電力の需給バランスに応じて充電開始、とかが普通になるかもね。

気候

寒さ

BEVは寒さに弱い。リチウムイオン電池特性上、寒くなると容量が可逆的ではあるが減る。そのためテスラにはバッテリーヒーターが搭載されている。(ちなみに、寒いノルウェーでもテスラが爆売れしているし、なんと新車の半分くらいの売り上げがBEVという。もはや寒さは問題ではないのかも?(まぁ優遇政策があるからだけどね))

FCEV寒いと反応が弱まって出力が減るので、そこらへんは考慮されている。

一方ICEも、冬になると燃費悪化するとされる。US DoEによると、理由は、オイルの粘度低下、温度上昇までの暖機、ガソリンの配合が夏と違う(日本でも同じかは謎)など。他には空気密度によるエアロダイナミクス悪化とかがあるがこれはEVでも同じだ。オイルなどが原因となって燃費悪化するのはICE特有だろう。

暑さ

BEVはまた暑さにも弱い。Li-ionは熱によって不可逆的なダメージを受けて、寿命が縮む。そのためテスラにはエアコンを利用する水冷バッテリクーラーが搭載されている。リーフは空冷で、これが問題だったのか、劣化問題でざわついていたリーフオーナーも多かった。今は改善されているらしい。

用語

ソース

URLを多く貼るとスパム認定されるから貼れないけど、US DoEとかCARB、日本だと日本自動車研究所あたりの公開資料を見ればソースに当たれる。

一つだけ、EV vs ICE効率について、13分程度で詳説してある動画URLを貼っておく。英語字幕もないが、割と平易なので、見てみてほしい。論文ソース動画の中でよく書かれている。

製造時の負荷」「化石燃料の発電でEVを使うのは利点あるのか?」「リチウム採掘の負荷」の3つで説明されている。簡単に箇条書きにすると:

https://www.youtube.com/watch?v=6RhtiPefVzM

おまけ&追記

マツダLCAについて

前述のようにマツダEVと自社のICEについて、Well-to-Wheelでライフサイクルアセスメント比較している。その比較におけるLi-ion製造時のCO2排出量のデータだが、2010年〜2013年のデータとなっており古い。しかも、Li-ion製造時のCO2排出量は研究によってばらつきが大きく、いろいろな見方があり正確性があまりないのが現状。また現状を反映していないと考えられる。例えばテスラギガファクトリー」のように太陽電池をのせた自社工場場合などについては考慮されていないのが問題だ(写真を見ると良い、広大な敷地ほとんど太陽光で埋まっている)。

また、マツダ研究バッテリ寿命を短く見積りすぎている点で、EVライフサイクルコストが大きく見える原因となっている。テスラのようにバッテリマネジメントシステムBMS)がしっかりとしたEV寿命が長く、またLi-ionの発展によって将来は寿命を伸ばすことは可能だろう。事実、今まで電極や電解質改善によってサイクル寿命は伸びてきた。

テスラは現時点で最も売れているわけだし、このことを考慮しないのは少々ズルいと言える。

なぜ水素エンジン効率が悪いか ( id:greenT )

"Why Hydrogen Engines Are A Bad Idea" でYouTube検索したらわかりやすいが、噛み砕くと

あと補足すると「エンジン」は爆発によるエネルギーを使っているが、全てを使い切れていないこと。十分に長いシリンダーを使って、大気圧まで膨張させるならエネルギーをかなり取り出せるが、そんなもの実用存在できないので、爆発の「圧力」を内包したまま、排気バルブを開けることになる。この圧力ターボチャージャーで利用することも可能ではあるが、全て使い切れるわけではない。

あーでも、水素エンジンメリットが1つあった。燃料電池(PEFC)は白金必要とするため Permalink | 記事への反応(16) | 01:34

2018-08-12

HONDA VEZEL におけるディーラー営業あやふや知識

HV Z FFカタログ燃費が他グレードのFFより悪い理由

FFではHVZだけが車重1310kgを超えており、JC08モード燃費試験における等価慣性重量の区分が他グレードのFF車と異なるため。この重量区分にはHV Z FFHV 各グレードのAWDが含まれる。

JC08モードでは燃費計測のためのシャシーダイナモ抵抗等価慣性重量)が試験車重(車重+110kg)に応じて段階的に区分されている。グレードによる車重の違いにより上位の区分と下位の区分に分かれると、それぞれ異なる抵抗値による燃費計測となり、上位に区分されたグレードが非線形的に不利になる。

なおJC08モード採用されるのは2018年8月までで、国際基準であり等価慣性重量が車重に応じて無断階に設定できるWLTPに移行するため、この問題は解消される。

FF車の方が最低地上高が高い理由

諸元表によればFF車の最低地上高は18.5cm、AWD車は17cmでFF車の方が高い。これはAWD車の悪路走行を想定して燃料タンク保護するフューエルタンクガードパイプという部品が取り付けられているため。

これを取り外せばFFAWDは同じ地上高となるが、擦ることが前提の部品であり、装着しておいた方が安心である

テールランプの違い

ヴェゼルには導光チューブLEDを用いたものと通常の単体LEDの集合のものの二種類のテールランプがある。

導光チューブのものフェンダー側とハッチバック側に導光チューブのテールランプがあり、フェンダー側に単体LEDブレーキランプがある。

単体LEDのものは、フェンダー側に単体LEDブレーキランプを兼ねるテールランプがあり、ハッチバックのものダミーである

17モデルまでは、ハイブリッドモデルに導光チューブガソリンモデルに単体LEDのテールランプであったが、18モデルからガソリンRSにハイブリッドと同様の導光チューブのもの採用された。また18モデルから若干のデザイン変更があった。

荷室のフルフラット化についてのモデルによる違い

ヴェゼルではフィット同様センタータンクレイアウト恩恵を受けた後部座席ダイブイン機構によって、荷室と後席背面によるフラット空間使用可能であるが、荷室と後席背面の段差のでき方にモデルによる違いがある。

荷室と後席背面がツライチフラットハイブリッドFF

荷室の方が後席背面より約5cm高い:ハイブリッドAWD

荷室の方が後席背面より約5cm低い:ガソリンFFガソリンAWD

したがって、何もせずに完全なフラットにでき車中泊などに使えるのはハイブリッドFFのみであり、残りのモデルでは何らかの嵩上げ必要である

嵩上げについては荷室側の方が面積が狭く後席足元を埋める工作干渉しないため、ガソリンFFAWDの方が工作が容易であり、ハイブリッドAWDはやや手間がかかる。

はいえ段差があるだけで両方とも水平ではあるため、後席背面が斜めになる他社のフラット機構よりは使いやすい。

現状i-DCD車に全車速ACCが適応されていない理由の推測

i-DCDは、初動をモーターにして擬似的な1速としている。この「1速」での始動バッテリーの充電具合に寄るので充電が少ない状態だとモータ始動できず2速発進状態になる。

i-DCD搭載車で全車速対応ACCにすると、停車は出来ても、滑らかな再発進が難しい場合がでてくる。トランスミッションダメージを与える可能性もある。

これがセンシングが、緊急停車ブレーキには対応出来ていても全車速ACC に対応出来ない理由。強引に止まる事は出来るが、再発進が出来ない。

下手な話だが、やろうと思えばガソリン車はCVTなので、対応可能。ただ、ハイブリッドより下位グレードのハズのガソリン車のみ全車速ACCに対応、としてもバツが悪いので未対応のまま。

i-DCD開発時には、ここまで急速に全車速対応のACCが普及するとは思っていなかったので、仕方ない。

Honda SENSINGにおける単眼カメラメーカーの違い

現在ホンダ先進運転支援システム(ADAS)「Honda SENSING」で使う単眼カメラ日本電産エレシスからドイツボッシュBosch)製に順次変更中であるが、VEZELの18年マイナーチェンジ時点では変更はなされていない。

ボッシュ製になることで、同システムの主要機能の一つである自動ブレーキの昼間の歩行者検知性能が大幅に高まるが、2018.8現在ボッシュ製の単眼カメラを搭載しているのは、セダンの「シビック」と軽自動車の「N-BOX」のみ。2017年に行った全面改良で単眼カメラ日本電産エレシスからボッシュ製に変更した。

ボッシュの単眼カメラは、日本電産エレシス製品に比べて「水平の検知角が広い」、「歩行者認識精度が高い」といった特徴があり、走行車線左側の歩道から飛び出す歩行者や、停車している車両の前方から飛び出す歩行者などを検知しやすい。コスト日本電産エレシス製品より安い。

またボッシュの単眼カメラは、1台のカメラHonda SENSINGの基本機能対応できる。従来は「オートハイビーム」の機能を実現するために、別の単眼カメラを追加していた。これらの理由からホンダは、単眼カメラボッシュ製に変更したようだ。

ホンダは今後、Honda SENSING用の単眼カメラにはボッシュ製品を使う。新型車だけでなく、既存の車種についても全面改良の時期に合わせて、日本電産エレシスからボッシュ製に切り替える計画である

自動ブレーキ歩行者検知性能の向上は、国土交通省自動車事故対策機構(NASVA)が2018年5月31日に発表した2017年度の「自動車アセスメント(JNCAP)」の結果にも現れた。

アセスメントの予防安全性評価の結果を見ると、昼間の歩行者対象にした自動ブレーキ試験では、ボッシュの単眼カメラを搭載するシビック24.4点(満点:25.0点、以下同じ)、N-BOXが22.6点だった。

これに対して、日本電産エレシス製の単眼カメラを搭載するミニバンの「ステップワゴン」は10.6点、小型車の「フィット」は11.5点である。これら2車種の点数は、ボッシュカメラを搭載する2車種の値を大きく下回っている。

http://tech.nikkeibp.co.jp/atcl/nxt/column/18/00001/00563/?P=2より引用改変)

2018-04-27

「フュ」が発音できない

フューエルキャップ」を「ヒューエルキャップ」と言ってしまう。

 
ログイン ユーザー登録
ようこそ ゲスト さん