「SKYACTIV」を含む日記 RSS

はてなキーワード: SKYACTIVとは

2020-12-19

EV問題について整理してみる

昨今、まことしやかに騒がれてる「EVシフトであるが、その実現のためには様々な問題があると思う。EVにまつわる問題点にまつわる意見を、備忘録がてらまとめてみたいと思う。

「こんな問題もあるよ!」っといった意見や、文中のどこそこは間違っている、おかしいなどの指摘があれば、教えてください。

1.電力需要の増大にまつわる問題

EVを広く普及させていくにあたり、電力需要の増大が予想される。では、具体的にどれくらい需要が増えるのか。

乗用車400万台をすべてEV化すると、電力使用量がピークとなる夏の時期に、発電量を10%から15%増やさなければならないという試算が出ている。これは、原子力発電所プラス10基分、火力発電所プラス20基分に相当する規模である[1-1]。もし、原子力発電所新規建設、稼働することで補おうとすると、放射性廃棄物問題や、災害時のリスクテロの標的となる等のリスクが発生し、火力発電所場合では、CO2排出量の増加を招きかねない。

これは2018年度末のデータであるが、東京電力火力発電所の熱効率は、石炭石油、ガスの発電を平均して49.7%[1-2]となっている。それに対し、2020年現在ガソリンエンジン車の熱効率一般的に40%前後となっており、トヨタ カムリ搭載の2.5Lエンジンが41%[1-3]、マツダSKYACTIV-Xは公式の発表はないものの、43%前後[1-4]と言われている。これを考慮すると、火力発電所が主力といえども、EVの方がCO2排出量が少ないと考えられる。

しかし、研究室ではエンジン単体で熱効率50%を超えるエンジンの開発に成功している[1-5]ことから、将来的に熱効率50〜60%を超えるエンジン一般的になる可能性も十分にある。そして、電力の送配電に4%ほど送電ロスがある[1-6]点において火力発電所は不利になることを考慮すると、EVを普及させて火力発電所を動かすよりも、内燃機関を搭載した車の方がCO2排出量が少なくなる可能性もある。

2.給電設備問題

EVの普及にあたって、充電ステーションの普及は必要不可欠となる。といってもEV場合基本的には自宅で充電するため、既存ガソリンスタンドをまるまる充電施設に改修する必要は薄いと考えられる。充電ステーションを設置しなければならないのは、EVオーナーの自宅駐車場、そしてパーキングエリア観光地などといった場所である

自宅が一軒家の場合比較簡単に、安価に設置できる。しかし、マンションなどの集合住宅駐車場場合設備費用工事費用、維持費が高額になるばかりでなく、管理者との合意形成必要もあるため、充電設備の設置はあまり進んでいないのが現状である中央電力株式会社経済産業省データを元に作成した資料によると、新築マンションに住むEVオーナーのうち、自宅に充電設備があるオーナーは1%未満である[2-1]。

また、お盆GWの時期には観光地高速道路パーキングエリアが大混雑するが、このような状況下でも、EVの充電ステーションが不足しないように整備しなければならない。特にパーキングエリアキャパ不足は長距離トラックにとってさらに深刻で、慢性的に駐車マス不足が続いているパーキングエリアも珍しくない。キャパ不足気味のパーキングエリアで給電設備を充実させるためには、パーキングエリアの簡易的な改修だけでは済まされず、抜本的な改修が必要である

そして、充電設備の充実のためには、充電時間の短縮も重要になる。短時間で充電できるような充電器の開発や、それに対応するバッテリーの開発も必要となる。

乗用車400万台をEV化した場合、充電設備投資コストは14〜37兆円掛かると見積もられている[2-2]。そのコストのうち、民間がどれだけ負担できるか分からないが、設備投資を促すために国から出資や、法整備などが求められることは間違いないだろう。

3.市場競争力にまつわる問題

EVが普及するためには、市場において消費者に受け入れられなければならない。既存ガソリン車と比べ、EVは十分な市場競争力を持ち合わせているのだろうか。

少なくとも2020年現在日本国内においては、EV市場で受け入れられているとは言い難い。2020年1月〜6月の新車登録車数は、日産リーフが6,283台なのに対し、同セグメントの日産ノートは41,707台[3-1]と、EVガソリン車に対して大きく水を開けられている。主な原因は価格で、日産ノートは122.8万円から販売に対し、日産リーフは332.6万円からEVであることに魅力を見いだせない限り、消費者EVを買うことは非常にハードルが高い。しかし、新しいバッテリーの開発や、減税や補助金などによって、価格競争力を獲得していく可能性もあるだろう。

そして、次に消費者EVを受け入れるにあたって重要となるのが、充電して使うという特徴と航続距離の短さを消費者がどう捉えるかである

普段使いとして通勤や買い物に使う分には、EVガソリン車と比べて優位であるといえる。というのも、家に帰ってプラグを挿せば充電されるため、わざわざガソリンスタンドで給油をする必要がなくなるからである電気代も、ガソリン軽油と比べて安いことも大きなメリットとなる。さらに、停電時に車から住宅に給電できることも、大きな特徴である

しかし、自宅で充電できることと、住宅に給電できるという特徴は、プラグインハイブリッド車と共通したものである。したがって、プラグインハイブリッドには無いようなEVメリット消費者に示せなければ、EVは選ばれにくくなる。

さらに、長距離ドライブでは航続距離の短さがネックとなる。テスラなどのEVは、残量が減ると自動で最寄りの充電施設に案内してくれる機能が備わっているし、似たようなサービスを行うスマホアプリなども登場しているが、それらが「電池切れを起こしたらどうしよう」という消費者心理をどれくらい払拭してくれるだろうか。もちろん、パーキングエリア観光地で充電設備などのインフラ整備が進めば不安はある程度減るだろうが、「お盆帰省ラッシュ時に、パーキングが大混雑してて充電スタンドが使えなかったらどうしよう」などと言った不安は、考え出せばキリがない。また、今年12月、関越道大雪のために立ち往生が起こったニュースを見て、EV敬遠した人も少なくないはずだ。失敗したくない大きな買い物で、未知なる商品消費者は手を出せるだろうか。

EV消費者に選ばれるためには、プラグインハイブリッド車にはないEVならではのメリットを持ち、充電インフラと航続距離デメリットをある程度解消しなければならない。そのためには、低価格で大容量のバッテリーや、短時間で充電可能設備の整備などが必要である

4.災害時の問題

災害時のEVメリットとして、EVから住宅に給電できるというものがあり、これは停電時においてガソリン車にはないメリットである災害時において、電力の復旧は真っ先に行われるため、災害の規模によってはガソリン車よりもEVの方が有利になることも多い。また、災害時にはガソリン需要が急速に高まり品薄になることもあるが、電力さえ生きていれば、EVではそのような心配をする必要もなくなる。

しかし、燃料の補給が困難であることは、災害時にEVリスクとなる。内燃機関場合、よそから燃料をもってくれば動かすことができるものの、EV場合それが困難であるからだ。前述の関越道の立ち往生のようなシチュエーションであったり、東日本大震災のように、電力インフラが壊滅的に破壊されてしまった場合には、EVは非常に不利になるだろう。

5.産業の衰退にまつわる問題

日本自動産業は沢山の中小企業を支える巨大産業である。もし、EVが主流化することで部品簡素化が進み、中小企業利益減少、それに伴う倒産が相次げば、日本経済に影響を及ぼす可能性がある。EV化で不要となる自動部品の出荷額は、2014年の実績によると、5,368億円にのぼるという試算があり、これは自動車関連部品の出荷額のうち、25%に相当する[5-1]。

6.バッテリー製造にまつわる希少金属(レアメタル)の問題

2020年現在EVバッテリー製造にあたって、リチウムコバルト等のレアメタルが使われている。しかし、このようなレアメタルは埋蔵量が少ないほか、生産国が限られているため、地政学的なリスクがともなう。たとえば、 全世界リチウムの産出量のうち、その半分以上をアルゼンチンボリビアチリが担っている[6-1]。 さらに、コバルトに至っては、その産地がコンゴ共和国1国だけに集中している[6-2]。

インフラを担う資源特定地域に集中していることは、地政学的なリスクが伴う。かつてオイルショックによって経済混乱が引き起こされたが、EVの主流化は、それと似たような混乱をまねくおそれがある。

このような問題を受け、レアメタル使用しないバッテリーの開発が各国の自動メーカー研究機関によって行われているが、完成・量産化のめどは立っていない。

7.石油燃料が余る可能性について

原油は燃料(ガソリン軽油)や化学原料の製造など、様々な形で利用されているが、これらは原油精錬することで作られている。

石油消費量のうち、自動車用燃料の割合は40%ほどであり[7-1]、仮に自動車がすべてEVになったとしても、原油需要ゼロになるわけではない。つまりEV自動車の主流になった場合原油精錬する過程で生じる軽油や、ガソリンの原料となる重質ナフサが余る可能性がある。

余った石油燃料やその原料は、火力発電などで消化できればよいが、それができない場合は何らかの利用法を考えなければならない。

ざっくりまとめると、EVが普及するためには、新しいバッテリーの開発と、電力需要の増大に対する対応が求められる。新型バッテリーは、市場競争力の獲得、地政学的なリスク回避のために必要であるが、その実現の見通しは立っていない(バッテリーの開発は半導体研究と異なり、運頼みのような要素が強いためである)。しかし、優れたバッテリーが開発されてしまえば、EVシフトは一気に現実味を増してくるだろう。

しかし、それ以上に困難な問題が、電力需要を何らかの方法で賄わなければならないことである自然エネルギーを利用する場合ランニングコスト供給不安定になりがちなこと、場合によっては自然破壊につながることを考慮しなければならない。原子力発電所を主力とする場合、再稼働するだけではなく、新たに発電所を設けなければならないうえ、放射性廃棄物問題災害時のリスク解決されていない。また、火力発電所を主力とする場合こちらも発電所建設する必要があるほか、ガソリン車の方がCO2排出量が少なくなる可能性も否定できない。そして、EV化を進めるにあたって様々な領域において設備投資必要であり、莫大なコストが掛かるほか、その過程でもCO2排出されることを考慮しなくてはならない。

個人的な考えとしては、無理してEVシフトさせていく理由はないと思う。バッテリーの開発の見通しが全く立っていないのに対し、内燃機関の開発はある程度見通しが効いていることをふまえると、ハイブリッドカーによってCO2削減を目指すほうが建設的なのではないか。もちろん、「EVなんていらん!」と言いたいわけじゃないけど、「内燃機関消滅するんだ!」っていうのはあまりにも行き過ぎなんじゃないかなと。また、世界各国が将来的にガソリン車の販売禁止を行うとしているが、どの国もEVにまつわる問題解決道筋を明確に示せていない以上、事実上は達成目標にすぎないのではないかと思う。

市場競争力などを考えると、EVセカンドカーとしてある程度は普及すると思うけど、主流になるのは高熱効率エンジンを積んだプラグインハイブリッドカーなんじゃないかな。

追記2021年1月21日

はてなブックマークにてこのような内容の批判いただきました。

これが世界の潮流であり、北米欧州中国という日本よりはるかに大きな市場EVに舵を切っている。というのが抜けてますよ/日本だけで細々と売ってくならいいけど、世界に車を売たきゃ潮流に乗らないと。

どんな国内事情があろうとも、EU中国ガソリン車全廃と言っているんだから、限られた時間の中解決していくしかないでしょ。解決出来なければ、日本自動産業は淘汰されるだけ。

これらの批判に対するコメントを書いていこうと思います

このようなはてなブックマーク批判に加え、「EV化は環境問題解決のためというよりも、自動産業における次世代覇権をかけた競争となっているため、否応がナシにEV化は進む」

という論を度々見かけますしかし、このような論調は「欧米各国や中国では、EV化と内燃機関全廃が必ず 実現される」という前提の上に成り立っており、欧米各国や中国における、EV化の実現可能性にまつわる議論が欠けているものだと思います政治的圧力をかければ、何でもかんでも上手くという論はあまりにも乱暴です。

たとえば電力にまつわる問題中国場合貿易戦争によって石炭の輸入量が低下し、2020年から大規模な電力不足が発生しています。また、ドイツでは自然エネルギーの大規模な利用に成功していると言われていますが、実際は自然エネルギー安定的供給できておらず、不足した際はフランスから原発由来の電力を輸入している状況です。電力不足自然エネルギーの利用にまつわる問題は、日本のみならずありとあらゆる国でも課題となっています

他にも、本文において書いたようなバッテリーにまつわる問題市場競争力にまつわる問題は、あらゆる国において共通するような問題であるといえるでしょう。そして、このような問題解決にあたり、まだ形にさえなっていないような新しい技術必要とされています

世界各国ではEV化を進めるための具体的な 算段や道筋がついており、非常に高い可能性で実現できそうである。このままでは日本出遅れるだろう。」という話であれば、私もEV化と内燃機関の淘汰に異論はありません。しかし、実際はどうでしょうか。どの国も具体的な道筋を示せておらず、問題は山積み。そのような状況で、政治的に舵をとりさえすれば実現するようなものだと言えるでしょうか。欧米各国や中国が、EV化に失敗することはないと断言できるでしょうか。

私は、将来的にEV化することを完全に否定するわけではありません。本文に書いたとおり、現在と比べてEVシェアは大きく伸びると思いますし、想像もつかないような技術が開発されることによって、本当に内燃機関が淘汰されるかもしれません。しかし、本文に上げたような問題現在あることを考えると、「内燃機関は必ず淘汰されることになる」とは言い切れないこともまた事実であり、現実だと思うのです。

そして、EV化と内燃機関車の廃止を実現できるかどうか不明瞭で、失敗する可能性も多いにあるのにもかかわらず、「世界中がそういう潮流になっているから、これに乗り遅れるな!」というのはあまりにも安易な考えであると言わざるを得ません。そのような場当たり的な判断では、今まで積み重ねてきた日系メーカー技術的なリードを失い、国際競争力を失うことになるでしょう。

EV化やエネルギー問題は、潮流に流されず、事実や実現可能性をしっかりと見極めて方針を決めていくべきだと思います。少なくとも、「他国がこう言っているから」という安易理由で舵取りしていくべき問題ではありません。

2020-02-10

anond:20200209170643

ICE効率の点ではEVに遥かに及ばないよ。印象だけでは語るとデマになるので、少し計算した方が良い。

エンジン (ICE: internal combustion engine) 効率

追記: 過小評価していたので熱効率を上げました)

原油⇒精製(90%)⇒輸送(98%)⇒エンジン(30-40%)⇒変速機(80-90%)

=20%-35%程度

効率向上の限界

一番の問題は、熱機関は最良でもカルノーサイクルの壁を超えられないこと。つまり入力と出力の温度差による限界が来るわけ。

エンジンの素材は金属なので、良くても数百度かにしかできないわけで、予算度外視でどんなに効率をよくしても量産車で60%に至ることはありえない。

エンジンアルミか鉄なわけで、そこまで高温にできない。それで30-40%止まりと言うわけ。最近50%近いエンジンができたーとか言うニュースもあるが、もう熱力学上、天井は見え始めている。これは物理学なので、どうしようもならない。

(ちなみに、燃焼温度を上げると今度はNOxなどの問題顕在化してくる。そのため、むしろEGRなどにより温度を下げるのがトレンドエンジン開発はいろいろなトレードオフなのだ。)

ディーゼルエンジン効率比較的高く、CO2排出ガソリンエンジンよりも少ないとされるが、NOx/PMなどの排出が多い問題がある。NOxについてはマツダが頑張って尿素SCRなしのエンジン作ったけど、結局、PMについては、DPFを用いて微粒子を捕獲している。そのDPFの煤焼き運転必要だったりするので、その分の燃料は無駄になるわけだよね。

で、エンジン車の問題として、トルクバンドが上のほうにあるので、クラッチトルクコンバーター等と変速機が必ず必要となる。その際にロスが出てしまう。AT/MT/DCTは段数が少ないとパワーバンドを生かしきれない。段数が多いと重い。CVT滑るし、CVTルードは温まるまで粘度が高くてロスになる(ダイハツCVTサーモコントローラーとかで頑張ってるけど)。

エンジン効率への批判について

エンジンの熱効率50%に達したという記事JSTの「革新的燃焼技術」)で反論する方がいらっしゃるが、そのエンジン実験室の563cc単気筒エンジンだ。もちろん単気筒なんて自動車では振動などで使い物にならないから、最低でも3気筒からとなる。そうしたときに、気筒が増えて動弁系などのフリクションの発生によって効率は下がるはずなので、そのまま量産車に適用することは難しい。実用車では気筒数増加による動弁系の負荷、オルタネーターなど補機系の負荷などもかかってくることも頭に入れておきたい。

日産が45%のエンジンを開発しているとの記事もあるが、これはe-Powerの「発電専用」エンジンだ。ハイブリッドなので、こういう芸当が可能だ。

45%からは数%上げるだけでも相当血のにじみ出るような開発の労力がいるだろう。

燃焼温度についての批判

燃焼温度アルミや鋳鉄の融点よりも遥かに高いと言う指摘があった。その通りです。

しかし、熱力学説明たかっただけで、例えば入口・出口の温度差を数万度にしたならば、熱効率はかなりのものとなるが、そんなものは物性的不可能ということを示したかった。

なので、燃焼温度は限られるという意味

BEV (Battery EV) 効率

原油火力発電(超臨界発電) 50-60%⇒送電 (95%) ⇒バッテリへ充電(90%)⇒変換(96%)⇒モーター(95%)

=39-45%

効率アップの方法

PHEV, BEV場合、上に示したうちで一番効率の悪い「火力発電」の部分を再生エネルギーや水力に転嫁することで、CO2削減を目指せる。もちろん、原発にしてもCO2は減らせる。

なお日本火力発電所のSOx/NOx排出海外に比べてもとても少なく、優秀である

発電所の部分では、現状でも50-60%の効率は稼げる。なぜ熱機関なのにここまで効率が出せるかと言うと、巨大なプラントで高温に耐えるコストの高いタービンを回してるから

それによって熱機関効率が高められるから。車のエンジンは小さくてスケールメリットが働かないよね。でも発電所レベルなら巨大で、コストも充分かけられるのでこう言う芸当ができる。

で、電気輸送に関しては送電線なので一度つなげたらしばらくはCO2を出さない。送電効率も超高圧送電(100万ボルト以上)によって高まっている。

また、インバーターとかモーターに電気を流す部分はパワーデバイス(GaN等)の発展によってどんどん効率が上がっている。

なお、モーターのトルク特性としてエンジン車のように変速不要のため、クラッチトルコン変速機などによるロスはない。将来、インホイールモーターが実用化されれば、モーター→タイヤへの伝達効率さらに上昇する。

回生

ちなみに、xEV回生充電もできるために、ブレーキ時に運動エネルギーICEほど熱に変わらない。

(一方ICEエンジンブレーキを使ったとしてもエネルギーに変えているわけではないので(多少オルタネータの充電制御は入るが)、ブレーキ時には運動エネルギーを熱にしてしまう。せっかく石油を燃やして運動エネルギーを得たのに、そのエネルギーを回収しないで熱に変えるわけ。)

まあxEV回生できるとはいえ回生時にパワーデバイスとかの充電ロスがあるから、実はコースティング回生も何もしない)で空走した方が距離を稼げる。なので、前の信号が赤にかわったときEVに関していえば、ブレーキも何も踏まないで空走状態を維持し、空気抵抗だけで0kmにするのが一番効率が高い。まあ、そんなことしていたらノロノロすぎてウザがられるので、妥協点として回生ブレーキを使ってちょっとはロスするけど、エネルギーを回収しながら止まるってことだね。

ICEだと、エンジンブレーキ積極的に使って、ブレーキを踏まない運転を心がければ良い。やってはいけないのは、Nに入れて空走すること。Nに入れるとエンジンアイドリングを維持するために燃料を消費する。ギアを入れたままエンジンブレーキをかけると、その間は燃料噴射をやめても回転が維持できるので、エンジンは燃料噴射をやめて、実質消費はゼロとなる。)

BEV製造時の負荷は?

製造CO2

バッテリーの製造時の負荷は確かに高い。しかし、製造には電気を使っているので、電力構成によりCO2排出は変わる。つまりグリーンエネルギーを使えば問題なくCO2を減らせると言うこと。

なお id:poko_penマツダのWell-to-Wheel理論を持ち出しているが、あれば古い時代バッテリ製造時のCO2データを使っていて、CO2排出過大評価している。最近テスラLi-ion電池工場では、再エネを利用して製造しているのでCO2は少なくできる。こうした、製造時のCO2排出問題工場や電源構成アップデートしていけば減らせる問題だ。

マツダはBEVよりもICE派で、SPCCI(圧縮着火)とかで頑張ってるからバイアスがかかってるのは仕方ないと思うね。私は内燃機関デザイン周りで頑張るマツダは大好きだけど、SKYACTIV-Xが思ったよりも微妙だったから株売っちゃったわ。)

リチウム採掘

Li-ion電池10%含まれリチウムは、採掘時に水を大量に使ったりする問題はある。ただ、これは「製造時」に限った話であり、内燃機関を使うたび、原油のために油田をあちこち掘り返したり、オイルタンカー座礁して原油を撒き散らしたりするのに比べれば遥かにマシというものだろう。

あと、専門外だけど、海水から抽出する技術研究中とか。

コバルト貴金属

xEVには必要となる貴金属類には依然として供給リスクとか採掘時の「児童労働」とかの問題を孕んでいる。ここら辺は全世界的に解決するしかなさそう。需要が増えれば、世界の目がこう言う問題に向くはずなので、我々技術者はそれを期待するしかない。

地域によるCO2排出量の差

例えば沖縄石炭火力の比率が高いため、EV効率を持ってしてもCO2排出HVとかより高くなる。しかし、それ以外の都道府県ではICEよりBEVの方がCO2が低い。原発が動いていない現時点でもね。

その他xEVとBEVとの比較

HV, PHEV

PHEVはもちろんICEより遥かにCO2を出さないが、BEVには勝てない。ただ、電力構成によっては逆転もありうるが、ほとんどの都道府県ではBEVの方がCO2を出さない。

燃料電池車 (FCEV)

(追記: anond:20200211034316 に FCEV vs BEV効率比較を書いた)

燃料電池車に関していえば、無用の長物と言える。水素製造する場合にも電力が必要だが、まあこれを再エネで行ったとしても、水素輸送タンクに注入する際の水素圧縮時のロスは非常に大きい。その圧縮の際に再エネを使ったとしても、結局そのエネルギーでBEVを充電した方が効率がいいのだ。

そもそもBEVならば、送電線さえあればいいわけで、わざわざ水素のように輸送する必要がない。

また燃料電池化学反応なので、アクセルレスポンスが遅いと言う欠点があり、反応のラグを補うために燃料電池車には結局バッテリーが積まれている。

ただ、航続距離は長いために、俺は現代におけるタクシーとかのLPG車みたいに細々と残るとは思う。航続距離重要トラックバスタクシーなどには燃料電池が使われるかもしれない。

効率以外にも、めんどくさい高圧タンクの法定点検とか、割と問題は多い。水素ステーションは可燃性の水素を貯蔵するわけだからEV充電スタンドよりも法的なめんどくささがあるのも確か。

水素ロータリー

これは燃料電池車より論外。カルノーサイクルに縛られてしまうので、電気分解よりも効率が悪くなる。水素の使い方としては燃料電池よりも悪い。

PHEV, BEVと再エネ

再エネは不安定と言われる。確かに自然相手なので、予測も難しい。しかし将来的にEVが普及すれば、EVバッファとして利用することで、不安定さを吸収しグリッドを安定させられる。

これは再エネを導入する動機にもなる。職場に着いたらEVCHAdeMOを挿しておいて、電力の需給バランスに応じて充電開始、とかが普通になるかもね。

気候

寒さ

BEVは寒さに弱い。リチウムイオン電池特性上、寒くなると容量が可逆的ではあるが減る。そのためテスラにはバッテリーヒーターが搭載されている。(ちなみに、寒いノルウェーでもテスラが爆売れしているし、なんと新車の半分くらいの売り上げがBEVという。もはや寒さは問題ではないのかも?(まぁ優遇政策があるからだけどね))

FCEV寒いと反応が弱まって出力が減るので、そこらへんは考慮されている。

一方ICEも、冬になると燃費悪化するとされる。US DoEによると、理由は、オイルの粘度低下、温度上昇までの暖機、ガソリンの配合が夏と違う(日本でも同じかは謎)など。他には空気密度によるエアロダイナミクス悪化とかがあるがこれはEVでも同じだ。オイルなどが原因となって燃費悪化するのはICE特有だろう。

暑さ

BEVはまた暑さにも弱い。Li-ionは熱によって不可逆的なダメージを受けて、寿命が縮む。そのためテスラにはエアコンを利用する水冷バッテリクーラーが搭載されている。リーフは空冷で、これが問題だったのか、劣化問題でざわついていたリーフオーナーも多かった。今は改善されているらしい。

用語

ソース

URLを多く貼るとスパム認定されるから貼れないけど、US DoEとかCARB、日本だと日本自動車研究所あたりの公開資料を見ればソースに当たれる。

一つだけ、EV vs ICE効率について、13分程度で詳説してある動画URLを貼っておく。英語字幕もないが、割と平易なので、見てみてほしい。論文ソース動画の中でよく書かれている。

製造時の負荷」「化石燃料の発電でEVを使うのは利点あるのか?」「リチウム採掘の負荷」の3つで説明されている。簡単に箇条書きにすると:

https://www.youtube.com/watch?v=6RhtiPefVzM

おまけ&追記

マツダLCAについて

前述のようにマツダEVと自社のICEについて、Well-to-Wheelでライフサイクルアセスメント比較している。その比較におけるLi-ion製造時のCO2排出量のデータだが、2010年〜2013年のデータとなっており古い。しかも、Li-ion製造時のCO2排出量は研究によってばらつきが大きく、いろいろな見方があり正確性があまりないのが現状。また現状を反映していないと考えられる。例えばテスラギガファクトリー」のように太陽電池をのせた自社工場場合などについては考慮されていないのが問題だ(写真を見ると良い、広大な敷地ほとんど太陽光で埋まっている)。

また、マツダ研究バッテリ寿命を短く見積りすぎている点で、EVライフサイクルコストが大きく見える原因となっている。テスラのようにバッテリマネジメントシステムBMS)がしっかりとしたEV寿命が長く、またLi-ionの発展によって将来は寿命を伸ばすことは可能だろう。事実、今まで電極や電解質改善によってサイクル寿命は伸びてきた。

テスラは現時点で最も売れているわけだし、このことを考慮しないのは少々ズルいと言える。

なぜ水素エンジン効率が悪いか ( id:greenT )

"Why Hydrogen Engines Are A Bad Idea" でYouTube検索したらわかりやすいが、噛み砕くと

あと補足すると「エンジン」は爆発によるエネルギーを使っているが、全てを使い切れていないこと。十分に長いシリンダーを使って、大気圧まで膨張させるならエネルギーをかなり取り出せるが、そんなもの実用存在できないので、爆発の「圧力」を内包したまま、排気バルブを開けることになる。この圧力ターボチャージャーで利用することも可能ではあるが、全て使い切れるわけではない。

あーでも、水素エンジンメリットが1つあった。燃料電池(PEFC)は白金必要とするため Permalink | 記事への反応(16) | 01:34

2018-07-16

anond:20180716220155

マツダはもう30年軽自動車作ってないからね

AZ-1エンジンシャシースズキだったし

それどころか今はOEMも五角形グリルすら作ってくれない

ここで一発SKYACTIV-K」を見てみたいね

2013-05-29

http://anond.hatelabo.jp/20130529180618

これはどういう意味

プリウスは高速みたいな止まる必要のない道でこそ、最大限の効率を達成するのであって

ハイブリッド車ストップ&ゴーの多い市街地でこそ、最大限の効率を達成するのであって

高速だと余り意味ないよね。止まらないなら重量の分SKYACTIVの方が有利かも。

 
ログイン ユーザー登録
ようこそ ゲスト さん