はてなキーワード: 局所変数とは
第1章 有限オートマトン D.Perrin:橋口攻三郎 1. 序論 2. 有限オートマトンと認識可能集合 3. 有理表現 4. Kleeneの定理 5. 星の高さ 6. 星自由集合 7. 特殊なオートマトン 8. 数の認識可能集合 第2章 文脈自由言語 J.Berstel and L.Boasson:富田 悦次 1. 序論 2. 言語 2.1 記法と例 2.2 Hotz 群 2.3 曖昧性と超越性 3. 反復 3.1 反復補題 3.2 交換補題 3.3 退化 4. 非生成元の探求 4.1 準備 4.2 生成元 4.3 非生成元と代入 4.4 非生成元と決定性 4.5 主錐の共通部分 5. 文脈自由群 5.1 文脈自由群 5.2 Cayleyグラフ 5.3 終端 第3章 形式言語とべき級数 A.Salomaa:河原 康雄 1. 序論 2. 準備 3. 書換え系と文法 4. Post正準系 5. Markov系 6. 並列書換え系 7. 射と言語 8. 有理べき級数 9. 代数的べき級数 10. べき級数の応用 第4章 無限の対象上のオートマトン W.Thomas:山崎 秀記 序論 Ⅰ部 無限語上のオートマトン 記法 1. Buchiオートマトン 2. 合同関係と補集合演算 3. 列計算 4. 決定性とMcNaughtonの定理 5. 受理条件とBorelクラス 6. スター自由ω言語と時制論理 7. 文脈自由ω言語 Ⅱ部 無限木上のオートマトン 記法 8. 木オートマトン 9. 空問題と正則木 10. 補集合演算とゲームの決定性 11. 木の単項理論と決定問題 12. Rabin認識可能な集合の分類 12.1 制限された単項2階論理 12.2 Rabin木オートマトンにおける制限 12.3 不動点計算 第5章 グラフ書換え:代数的・論理的アプローチ B.Courcelle:會澤 邦夫 1. 序論 2. 論理言語とグラフの性質 2.1 単純有向グラフの類S 2.2 グラフの類D(A) 2.3 グラフの性質 2.4 1階のグラフの性質 2.5 単項2階のグラフの性質 2.6 2階のグラフの性質 2.7 定理 3. グラフ演算とグラフの表現 3.1 源点付きグラフ 3.2 源点付き超グラフ 3.3 超グラフ上の演算 3.4 超グラフの幅 3.5 導来演算 3.6 超辺置換 3.7 圏における書換え規則 3.8 超グラフ書換え規則 4. 超グラフの文脈自由集合 4.1 超辺置換文法 4.2 HR文法に伴う正規木文法 4.3 超グラフの等式集合 4.4 超グラフの文脈自由集合の性質 5. 超グラフの文脈自由集合の論理的性質 5.1 述語の帰納的集合 5.2 論理構造としての超グラフ 5.3 有限超グラフの可認識集合 6. 禁止小グラフで定義される有限グラフの集合 6.1 小グラフ包含 6.2 木幅と木分解 6.3 比較図 7. 計算量の問題 8. 無限超グラフ 8.1 無限超グラフ表現 8.2 無限超グラフの単項性質 8.3 超グラフにおける等式系 8.4 関手の初期不動点 8.5 超グラフにおける等式系の初期解 8.6 等式的超グラフの単項性質 第6章 書換え系 N.Dershowitz and J.-P.Jouannaud:稲垣 康善,直井 徹 1. 序論 2. 構文論 2.1 項 2.2 等式 2.3 書換え規則 2.4 決定手続き 2.5 書換え系の拡張 3. 意味論 3.1 代数 3.2 始代数 3.3 計算可能代数 4. Church-Rosser性 4.1 合流性 4.2 調和性 5. 停止性 5.1 簡約順序 5.2 単純化順序 5.3 経路順序 5.4 書換え系の組合せ 6. 充足可能性 6.1 構文論的単一化 6.2 意味論的単一化 6.3 ナローイング 7. 危険対 7.1 項書換え 7.2 直交書換え系 7.3 類書換え 7.4 順序付き書換え 7.5 既約な書換え系 8. 完備化 8.1 抽象完備化 8.2 公平性 8.3 完備化の拡張 8.4 順序付き書換え 8.5 機能的定理証明 8.6 1階述語論理の定理証明 9. 書換え概念の拡張 9.1 順序ソート書換え 9.2 条件付き書換え 9.3 優先度付き書換え 9.4 グラフ書換え 第7章 関数型プログラミングとラムダ計算 H.P.Barendregt:横内 寛文 1. 関数型計算モデル 2. ラムダ計算 2.1 変換 2.2 計算可能関数の表現 3. 意味論 3.1 操作的意味論:簡約と戦略 3.2 表示的意味論:ラムダモデル 4. 言語の拡張 4.1 デルタ規則 4.2 型 5. 組合せ子論理と実装手法 5.1 組合せ子論理 5.2 実装の問題 第8章 プログラミング言語における型理論 J.C.Mitchell:林 晋 1. 序論 1.1 概論 1.2 純粋および応用ラムダ計算 2. 関数の型をもつ型付きラムダ計算 2.1 型 2.2 項 2.3 証明系 2.4 意味論と健全性 2.5 再帰的関数論的モデル 2.6 領域理論的モデル 2.7 カルテシアン閉圏 2.8 Kripkeラムダモデル 3. 論理的関係 3.1 はじめに 3.2 作用的構造上の論理的関係 3.3 論理的部分関数と論理的同値関係 3.4 証明論的応用 3.5 表現独立性 3.6 論理的関係の変種 4. 多相型入門 4.1 引数としての型 4.2 可述的な多相的計算系 4.3 非可述的な多相型 4.4 データ抽象と存在型 4.5 型推論入門 4.6 型変数をもつλ→の型推論 4.7 多相的宣言の型推論 4.8 他の型概念 第9章 帰納的な関数型プログラム図式 B.Courcelle:深澤 良彰 1. 序論 2. 準備としての例 3. 基本的な定義 3.1 多ソート代数 3.2 帰納的な関数型プログラム図式 3.3 同値な図式 4. 離散的解釈における操作的意味論 4.1 部分関数と平板な半順序 4.2 離散的解釈 4.3 書換えによる評価 4.4 意味写像 4.5 計算規則 5. 連続的解釈における操作的意味論 5.1 連続代数としての解釈 5.2 有限の極大要素と停止した計算 6. 解釈のクラス 6.1 汎用の解釈 6.2 代表解釈 6.3 解釈の方程式的クラス 6.4 解釈の代数的クラス 7. 最小不動点意味論 7.1 最小で唯一の解を得る不動点理論 7.2 Scottの帰納原理 7.3 Kleeneの列と打切り帰納法 8. プログラム図式の変換 8.1 プログラム図式における同値性の推論 8.2 畳込み,展開,書換え 8.3 制限された畳込み展開 9. 研究の歴史,他の形式のプログラム図式,文献ガイド 9.1 流れ図 9.2 固定された条件をもつ一様な帰納的関数型プログラム図式 9.3 多様な帰納的関数型プログラム図式 9.4 代数的理論 9.5 プログラムの生成と検証に対する応用 第10章 論理プログラミング K.R.Apt:筧 捷彦 1. 序論 1.1 背景 1.2 論文の構成 2. 構文と証明論 2.1 1階言語 2.2 論理プログラム 2.3 代入 2.4 単一化子 2.5 計算過程―SLD溶融 2.6 例 2.7 SLD導出の特性 2.8 反駁手続き―SLD木 3. 意味論 3.1 1階論理の意味論 3.2 SLD溶融の安全性 3.3 Herbrand模型 3.4 直接帰結演算子 3.5 演算子とその不動点 3.6 最小Herbrand模型 3.7 SLD溶融の完全性 3.8 正解代入 3.9 SLD溶融の強安全性 3.10 手続き的解釈と宣言的解釈 4. 計算力 4.1 計算力と定義力 4.2 ULの枚挙可能性 4.3 帰納的関数 4.4 帰納的関数の計算力 4.5 TFの閉包順序数 5. 否定情報 5.1 非単調推論 5.2 閉世界仮説 5.3 失敗即否定規則 5.4 有限的失敗の特徴付け 5.5 プログラムの完備化 5.6 完備化の模型 5.7 失敗即否定規則の安全性 5.8 失敗即否定規則の完全性 5.9 等号公理と恒等 5.10 まとめ 6. 一般目標 6.1 SLDNF-溶融 6.2 SLDNF-導出の安全性 6.3 はまり 6.4 SLDNF-溶融の限定的な完全性 6.5 許容性 7. 層状プログラム 7.1 準備 7.2 層別 7.3 非単調演算子とその不動点 7.4 層状プログラムの意味論 7.5 完全模型意味論 8. 関連事項 8.1 一般プログラム 8.2 他の方法 8.3 演繹的データベース 8.4 PROLOG 8.5 論理プログラミングと関数プログラミングの統合 8.6 人工知能への応用 第11章 表示的意味論 P.D.Mosses:山田 眞市 1. 序論 2. 構文論 2.1 具象構文論 2.2 抽象構文 2.3 文脈依存構文 3. 意味論 3.1 表示的意味論 3.2 意味関数 3.3 記法の慣例 4. 領域 4.1 領域の構造 4.2 領域の記法 4.3 記法上の約束事 5. 意味の記述法 5.1 リテラル 5.2 式 5.3 定数宣言 5.4 関数の抽象 5.5 変数宣言 5.6 文 5.7 手続き抽象 5.8 プログラム 5.9 非決定性 5.10 並行性 6. 文献ノート 6.1 発展 6.2 解説 6.3 変形 第12章 意味領域 C.A.Gunter and D.S.Scott:山田 眞市 1. 序論 2. 関数の帰納的定義 2.1 cpoと不動点定理 2.2 不動点定理の応用 2.3 一様性 3. エフェクティブに表現した領域 3.1 正規部分posetと射影 3.2 エフェクティブに表現した領域 4. 作用素と関数 4.1 積 4.2 Churchのラムダ記法 4.3 破砕積 4.4 和と引上げ 4.5 同形と閉包性 5. べき領域 5.1 直観的説明 5.2 形式的定義 5.3 普遍性と閉包性 6. 双有限領域 6.1 Poltkin順序 6.2 閉包性 7. 領域の帰納的定義 7.1 閉包を使う領域方程式の解法 7.2 無型ラムダ記法のモデル 7.3 射影を使う領域方程式の解法 7.4 双有限領域上の作用素の表現 第13章 代数的仕様 M.Wirsing:稲垣 康善,坂部 俊樹 1. 序論 2. 抽象データ型 2.1 シグニチャと項 2.2 代数と計算構造 2.3 抽象データ型 2.4 抽象データ型の計算可能性 3. 代数的仕様 3.1 論理式と理論 3.2 代数的仕様とその意味論 3.3 他の意味論的理解 4. 単純仕様 4.1 束と存在定理 4.2 単純仕様の表現能力 5. 隠蔽関数と構成子をもつ仕様 5.1 構文と意味論 5.2 束と存在定理 5.3 隠蔽記号と構成子をもつ仕様の表現能力 5.4 階層的仕様 6. 構造化仕様 6.1 構造化仕様の意味論 6.2 隠蔽関数のない構造化仕様 6.3 構成演算 6.4 拡張 6.5 観測的抽象化 6.6 構造化仕様の代数 7. パラメータ化仕様 7.1 型付きラムダ計算によるアプローチ 7.2 プッシュアウトアプローチ 8. 実現 8.1 詳細化による実現 8.2 他の実現概念 8.3 パラメータ化された構成子実現と抽象化子実現 8.4 実行可能仕様 9. 仕様記述言語 9.1 CLEAR 9.2 OBJ2 9.3 ASL 9.4 Larch 9.5 その他の仕様記述言語 第14章 プログラムの論理 D.Kozen and J.Tiuryn:西村 泰一,近藤 通朗 1. 序論 1.1 状態,入出力関係,軌跡 1.2 外的論理,内的論理 1.3 歴史ノート 2. 命題動的論理 2.1 基本的定義 2.2 PDLに対する演繹体系 2.3 基本的性質 2.4 有限モデル特性 2.5 演繹的完全性 2.6 PDLの充足可能性問題の計算量 2.7 PDLの変形種 3. 1階の動的論理 3.1 構文論 3.2 意味論 3.3 計算量 3.4 演繹体系 3.5 表現力 3.6 操作的vs.公理的意味論 3.7 他のプログラミング言語 4. 他のアプローチ 4.1 超準動的論理 4.2 アルゴリズム的論理 4.3 有効的定義の論理 4.4 時制論理 第15章 プログラム証明のための手法と論理 P.Cousot:細野 千春,富田 康治 1. 序論 1.1 Hoareの萌芽的な論文の解説 1.2 C.A.R.HoareによるHoare論理のその後の研究 1.3 プログラムに関する推論を行うための手法に関するC.A.R.Hoareによるその後の研究 1.4 Hoare論理の概観 1.5 要約 1.6 この概観を読むためのヒント 2. 論理的,集合論的,順序論的記法 3. プログラミング言語の構文論と意味論 3.1 構文論 3.2 操作的意味論 3.3 関係的意味論 4. 命令の部分正当性 5. Floyd-Naurの部分正当性証明手法とその同値な変形 5.1 Floyd-Naurの手法による部分正当性の証明の例 5.2 段階的なFloyd-Naurの部分正当性証明手法 5.3 合成的なFloyd-Naurの部分正当性証明手法 5.4 Floyd-Naurの部分正当性の段階的な証明と合成的な証明の同値性 5.5 Floyd-Naurの部分正当性証明手法の変形 6. ライブネスの証明手法 6.1 実行トレース 6.2 全正当性 6.3 整礎関係,整列集合,順序数 6.4 Floydの整礎集合法による停止性の証明 6.5 ライブネス 6.6 Floydの全正当性の証明手法からライブネスへの一般化 6.7 Burstallの全正当性証明手法とその一般化 7. Hoare論理 7.1 意味論的な観点から見たHoare論理 7.2 構文論的な観点から見たHoare論理 7.3 Hoare論理の意味論 7.4 構文論と意味論の間の関係:Hoare論理の健全性と完全性の問題 8. Hoare論理の補足 8.1 データ構造 8.2 手続き 8.3 未定義 8.4 別名と副作用 8.5 ブロック構造の局所変数 8.6 goto文 8.7 (副作用のある)関数と式 8.8 コルーチン 8.9 並行プログラム 8.10 全正当性 8.11 プログラム検証の例 8.12 プログラムに対して1階論理を拡張した他の論理 第16章 様相論理と時間論理 E.A.Emerson:志村 立矢 1. 序論 2. 時間論理の分類 2.1 命題論理 対 1階述語論理 2.2 大域的と合成的 2.3 分岐的 対 線形 2.4 時点と時区間 2.5 離散 対 連続 2.6 過去時制 対 未来時制 3. 線形時間論理の技術的基礎 3.1 タイムライン 3.2 命題線形時間論理 3.3 1階の線形時間論理 4. 分岐的時間論理の技術的基礎 4.1 樹状構造 4.2 命題分岐的時間論理 4.3 1階の分岐的時間論理 5. 並行計算:その基礎 5.1 非決定性と公平性による並列性のモデル化 5.2 並列計算の抽象モデル 5.3 並列計算の具体的なモデル 5.4 並列計算の枠組みと時間論理の結び付き 6. 理論的見地からの時間論理 6.1 表現可能性 6.2 命題時間論理の決定手続き 6.3 演繹体系 6.4 モデル性の判定 6.5 無限の対象の上のオートマトン 7. 時間論理のプログラムの検証への応用 7.1 並行プログラムの正当性に関する性質 7.2 並行プログラムの検証:証明論的方法 7.3 時間論理による仕様からの並行プログラムの機械合成 7.4 有限状態並行システムの自動検証 8. 計算機科学における他の様相論理と時間論理 8.1 古典様相論理 8.2 命題動的論理 8.3 確率論理 8.4 不動点論理 8.5 知識 第17章 関係データベース理論の構成要素 P.C.Kanellakis:鈴木 晋 1. 序論 1.1 動機と歴史 1.2 内容についての案内 2. 関係データモデル 2.1 関係代数と関係従属性 2.2 なぜ関係代数か 2.3 なぜ関係従属性か 2.4 超グラフとデータベーススキーマの構文について 2.5 論理とデータベースの意味について 3. 従属性とデータベーススキーマ設計 3.1 従属性の分類 3.2 データベーススキーマ設計 4. 問合わせデータベース論理プログラム 4.1 問合わせの分類 4.2 データベース論理プログラム 4.3 問合わせ言語と複合オブジェクトデータモデル 5. 議論:関係データベース理論のその他の話題 5.1 不完全情報の問題 5.2 データベース更新の問題 6. 結論 第18章 分散計算:モデルと手法 L.Lamport and N.Lynch:山下 雅史 1. 分散計算とは何か 2. 分散システムのモデル 2.1 メッセージ伝達モデル 2.2 それ以外のモデル 2.3 基礎的概念 3. 分散アルゴリズムの理解 3.1 挙動の集合としてのシステム 3.2 安全性と活性 3.3 システムの記述 3.4 主張に基づく理解 3.5 アルゴリズムの導出 3.6 仕様記述 4. 典型的な分散アルゴリズム 4.1 共有変数アルゴリズム 4.2 分散合意 4.3 ネットワークアルゴリズム 4.4 データベースにおける並行性制御 第19章 並行プロセスの操作的および代数的意味論 R.Milner:稲垣 康善,結縁 祥治 1. 序論 2. 基本言語 2.1 構文および記法 2.2 操作的意味論 2.3 導出木と遷移グラフ 2.4 ソート 2.5 フローグラフ 2.6 拡張言語 2.7 その他の動作式の構成 3. プロセスの強合同関係 3.1 議論 3.2 強双模倣関係 3.3 等式による強合同関係の性質 3.4 強合同関係における置換え可能性 3.5 強等価関係上での不動点の唯一性 4. プロセスの観測合同関係 4.1 観測等価性 4.2 双模倣関係 4.3 観測合同関係 4.4 プロセス等価性上での不動点の唯一性 4.5 等式規則の完全性 4.6 プロセスの等価性に対するその他の概念 5. 双模倣等価関係の解析 5.1 等価性の階層構造 5.2 階層構造の論理的特性化 6. 合流性をもつプロセス 6.1 決定性 6.2 合流性 6.3 合流性を保存する構成子 7. 関連する重要な文献
→少なくとも4年前には解決していない
http://netbeans.org/bugzilla/show_bug.cgi?id=114689
→Norway today」を改造して、City Lightsに似たオリジナルを作る。
→クラスの色は「Norway today」と同じになるが、バックが黒に文字が黒よりは見やすい。
凡例 前景 背景 その他
・デフォルト 緑 黒
・URL 継承 継承 →エフェクト:下線付き エフェクトカラー:青
・エラー 白 赤
・コンストラクタ 継承 継承 →フォント:継承+ボールド-イタリック
・セパレータ 継承
・フィールド 9,134,24 継承 →フォント:継承+ボールド-イタリック
・メソッド 継承 継承 →フォント:継承+ボールド-イタリック
・使用されていない要素 グレー 継承
・公開要素 全継承
・列挙 全継承
・数値 黄 継承
・文字 黄 継承
・空白 全継承
・識別子 全継承
・公開限定要素 全継承
・静的要素 継承 継承 →フォント:継承+ボールド-イタリック
・非公開要素 全継承
本講座ではほかの言語は触ったことがあるが、Ruby未経験者を対象にRailsを触るための最小限のrubyの知識を身につけるためのものである。
と、堅苦しく書いたけど仕事で急いでrailsを触れうようになるための最低限の情報だけをまとめてみたよ。
これを読んだだけではRubyでプログラムを書けるようにはならないと思うけど、Railsを使った開発だといきなり何もできないってことはなくなるはずだよ。
肩の力を抜いて読んでほしいな。
いきなり今まで宣言していない名前を使ってもおこらえないよ。
answer_to_life_the_universe_and_everything = 42 # answer_to_life_the_universe_and_everything ????~A~S??~S????~H~]??~A????~Y??| ??~A~Y??~K??~B
なんて書いても問題ないんだ。
静的言語をやってきた人には型の宣言がないことに違和感を感じる人もいるかもしれないけど、Rubyでは型はあんまり気にしないんだ。
int x = HogeHoge.new;
みたいな書き方では
変数xを用意してそこにHogeHoge.newを代入する。といった説明を受けたと思う。
でもRubyではちょっと違う考え方をするんだ。
x = Foo.new
だとFoo.newの変数を用意して、それを名前に"束縛"するって説明することが多いよ。
ラベルが貼られた箱を用意してそこに何かを入れるか、何かが入った箱を用意してそれにラベルを張るかの違いだね。後者のほうがちょっとだけ柔軟なんだ。
そして、柔らかいほうがRuby流って気がするよ。
でもそんなRubyでもちょっとだけ名前に関するルールがある。
小文字からはじまる名前が局所変数
ってルールだよ。
Railsだったらとりあえず@からから始まる名前にしておけばたいていは問題ないんじゃないのかな。
JavaやC言語ではif文なんかをよく使うよね。Rubyでもほとんど一緒だよ。
if something_condition do_some_thing elsif other_condition do_another_thing else do_something_if_you_wont end
もちろんelsifやelseが必要なければ省略することができるよ。
ほかにもRubyには便利な分岐の書き方があるよ。
so_some_thing if some_condition
みたいに後置でも書けるんだ。
どっちでも好きなほうを使えばいいと思うよ
def func_name ( some_val_names ) do_some_thing end
といった感じでdef..endでくくるだけで簡単に関数を宣言できるよ
そして関数の戻り値は最後に評価した値が自動的に戻り値になるんだ。
def baz 10 end
これは常に10を返す関数の例だよ。
プログラムをしていて非常によく使うデータの型といえば配列(Array)や連想配列(Hash)だよね。
Rubyではそれらを簡潔に使うために専用の文法を用意している。
それが[]と{}だ。
arr = [1,2,3,"A","B","CDE"] #??~M很~W宣訾@ has = {1 => "A",2 => "B", 3 => "C"} #??~O??~C????~CťΣ訾@ puts arr[3] puts has[2]
A B