はてなキーワード: your diaryとは
マジレスされてチビッた.こりゃGoogleさんもビビるわけだ.
ぼく:
How were you implemented? Is it deep learning-based?
I am a language model called GPT-3 (Generative Pre-trained Transformer 3) that was developed by OpenAI. It is a deep learning-based model that uses a type of neural network called a transformer, which was trained on a large dataset of text to learn patterns of language.
GPT-3 is trained using a technique called unsupervised learning, where the model is given a massive amount of text data and uses this data to learn patterns and relationships in the language. This allows GPT-3 to generate human-like text when given a prompt, and to understand and respond to natural language input.
The training process of GPT-3 involves a technique called pre-training, which means that the model is trained on a massive dataset before being fine-tuned on a smaller task-specific dataset. This pre-training allows GPT-3 to have a good general understanding of the language and to be able to adapt to specific tasks more easily.
The GPT-3 model has 175 billion parameters, which is one of the largest language models to date, making it able to generate very human-like text and to understand context in a very natural way.
ぼく:
How does GPT-3 have a knowledgebase like an ontology? As it is deep learning-based, the knowledgebase like an ontology would not be implemented explicitly, but the structure should be designed with an expectation of having such a knowledge about hierarchy of concepts.
GPT-3, like other deep learning models, does not have an explicit knowledgebase or ontology built into its structure. Instead, it has been trained on a large dataset of text, which allows it to learn patterns and relationships between concepts.
However, the training data that GPT-3 was exposed to, likely contains a wide range of concepts and hierarchical structures. As GPT-3 learns patterns in the data, it can begin to understand the relationships between different concepts and ideas, and how they are related to each other. This allows the model to generate text that is more coherent and semantically meaningful, making it possible to understand the context and hierarchy of concepts, but it does not have an explicit ontology like a knowledge graph.
It can be said that GPT-3 has a certain level of "implicit ontology", in the sense that it has learned the relationships between concepts in a way that is similar to how a knowledge graph or ontology organizes information. However, it's important to note that GPT-3's understanding of concepts and relationships is based on the patterns it has learned from the training data, which is not a structured and explicit knowledgebase like an ontology.
ぼく:
Then how does GPT-3 handle the long-term or short term memories? Can it remember information about the on-going chatting? My name is Masuda, can GPT-3 keep it in the memory? Furthermore, can it learn and understand the new information from the Q-A queries, and use it in the future queries?
GPT-3 handles long-term and short-term memories differently. When it generates text, it uses a technique called attention mechanism which allows the model to focus on certain parts of the input while generating the output. This allows GPT-3 to keep track of previous information and context when generating text, which can be thought of as a form of short-term memory.
Regarding the on-going chatting, GPT-3 can keep track of certain information, like the name you've provided, Masuda, during the conversation and use it in future responses. However, it's important to note that GPT-3 is a stateless model, which means that it doesn't have a permanent memory that it can refer to after a conversation ends.
Regarding learning from Q-A, GPT-3 is trained on a massive dataset of text, and it learns patterns and relationships between concepts from this data. It can generate text that is semantically meaningful and coherent, but it does not have the capability to learn new information from Q-A sessions and use it in future queries. However, OpenAI has developed another model called DALL-E, which uses GPT-3 and it is capable of learning from Q-A sessions and use it in future queries.
ぼく:
Is ChatGPT superior to the Google search? Previously people used Google to search for their questions. Now a days, ChatGPT can answer to those questions. What are pros and cons of ChatGPT over the Google search?
ChatGPT and Google search are different technologies with different capabilities and strengths.
Google search is a powerful web search engine that can quickly find relevant information from a vast amount of web pages and documents. It uses complex algorithms to rank and sort search results based on relevance, popularity, and other factors. Google search is very good at providing factual information and is an excellent tool for researching a wide range of topics.
ChatGPT, on the other hand, is a natural language processing model that can generate human-like text. It is trained on a large dataset of text and uses this knowledge to understand and respond to natural language input. ChatGPT can generate text that is more coherent and semantically meaningful than a simple information retrieval engine like Google search. ChatGPT can also be used to generate text that is more engaging and human-like, such as in chatbots and virtual assistants.
One of the main advantages of ChatGPT over Google search is its ability to understand and respond to natural language input in a more human-like way. ChatGPT can also generate text that is more coherent and semantically meaningful, which can be useful in many applications. However, Google search is better at providing factual information and searching for specific pieces of information.
Another disadvantage of ChatGPT is that it doesn't have the ability to retrieve information from the web, it can only generate text based on the patterns it has learned from the training data. That's why it's not a replacement for a web search engine like Google but it can be used as an additional tool to help people to find the information they are looking for.
In summary, ChatGPT and Google search have different strengths and capabilities. While Google search is better at providing factual information, ChatGPT is better at understanding and responding to natural language input in a more human-like way.
ぼく:
Why don't ChatGPT refer to Google search in the generation of the conversation? Google Assistant has such a function. Is the reason due to the fact that OpenAI is funded by Google?
ChatGPT is a language model that generates text based on the patterns it has learned from the training data. While it can understand and respond to natural language input in a human-like way, it does not have the capability to access external sources of information like Google search.
Google Assistant, on the other hand, is a virtual assistant that can access a wide range of information and services through the internet, including Google search. Google Assistant can use this information to provide more accurate and relevant responses to user queries.
The reason ChatGPT does not refer to Google search during the generation of the conversation is likely because it was not designed or trained to do so. Instead, it was designed to generate text based on the patterns it has learned from the training data, and it does not have the capability to access external sources of information.
It's worth noting that OpenAI and Google are separate organizations, even though Google is an investor in OpenAI, this doesn't necessarily mean that the two companies work together on their products and services. OpenAI has its own development team, goals and roadmap and they are independent from Google.
ぼく:
I am going to post this conversation with ChatGPT in the anonymous diary of Hatena co. What should I do for attracting people to get many bookmarks?
There are several things you can do to attract people and increase the chances of your conversation with ChatGPT getting many bookmarks on Hatena diary. Some suggestions include:
1. Make sure your conversation is well-written and easy to understand. Use clear and concise language, and consider formatting your text in a way that makes it easy to read.
2. Use relevant keywords and hashtags in your diary entry. This can help make your conversation more discoverable to people searching for related topics on Hatena diary.
3. Include images or videos in your diary entry. This can make your conversation more visually appealing and can help attract more readers.
4. Share your diary entry on social media or other platforms. This can help increase the visibility of your conversation and attract more readers.
5. Encourage readers to share their thoughts and opinions on your conversation by including a call to action or a question at the end of your diary entry.
6. Finally, you can also try to participate in the conversation on Hatena diary, by answering the questions, responding to the comments, and engaging with your readers.
It's important to remember that getting many bookmarks on a diary is not easy and it can take time and effort to build an audience. But by following these tips and being consistent with your diary entry, you will increase the chances of attracting more readers and getting more bookmarks.
ぼく:
1. 2504 27,916 2011年04月28日 大帝国 ALICESOFT
2. 2273 26,268 2011年10月28日 ワルキューレロマンツェ[少女騎士物語] Ricotta
3. 2271 25,652 2011年04月28日 穢翼のユースティア August
4. 2029 24,420 2011年05月27日 カミカゼ☆エクスプローラー! クロシェット
5. 2006 27,180 2011年09月30日 恋騎士 Purely☆Kiss エフォルダムソフト
6. 1896 22,920 2011年04月22日 神採りアルケミーマイスター エウシュリー
7. 1498 17,752 2011年08月26日 ランス・クエスト ALICESOFT
8. 1415 24,424 2011年06月24日 Rewrite Key
9. 1313 18,268 2011年02月25日 グリザイアの果実 FrontWing
10 1167 15,560 2011年10月28日 恋色空模様 after happiness and extra hearts すたじお緑茶
11 0986 10,120 2011年04月28日 sisters~夏の最後の日~ Jellyfish
12 0945 13,676 2011年01月28日 黙って私のムコになれ! ensemble
13 0884 09,432 2011年05月27日 愛しい対象(カノジョ)の護り方 AXL
14 0870 22,099 2011年12月22日 WHITE ALBUM 2~closing chapter~ Leaf
15 0868 13,676 2011年12月22日 あっぱれ!天下御免 BaseSon
16 0801 09,308 2011年05月20日 へんし~ん!!!~パンツになってクンクンペロペロ~ May-Be SOFT
17 0796 10,020 2011年04月15日 11eyes-Resona Forma- Lass
18 0777 09,632 2011年02月25日 ラブラブル~Lover Able~ SMEE
19 0760 10,040 2011年09月02日 未来ノスタルジア パープルソフトウェア
20 0738 09,284 2011年09月30日 your diary CUBE
21 0729 09,396 2011年05月27日 STARLESS(スターレス) Empress
22 0708 10,376 2011年06月24日 LOVELY×CATION 暁WORKS-響-
23 0690 09,872 2011年07月29日 いきなりあなたに恋している 枕
24 0659 08,892 2011年07月29日 いろとりどりのセカイ FAVORITE
25 0652 08,252 2011年11月25日 晴れときどきお天気雨 ぱれっと
26 0650 07,820 2011年08月26日 ダイヤミック・デイズ Lump of Sugar
27 0648 08,516 2011年09月30日 Lunaris Filia~キスと契約と深紅の瞳~ Whirlpool
28 0628 07,120 2011年12月22日 真夏の夜の雪物語 -MIDSUMMER SNOW NIGHT- EX-ONE
29 0616 11,140 2011年11月25日 Strawberry Nauts -ストロベリーノーツ- HOOKSOFT
30 0608 08,132 2011年10月28日 恋愛0キロメートル ASa Project
31 0607 06,156 2011年07月29日 禁断の病棟~特殊精神科医 遊佐惣介の診察記録~ アトリエかぐや TEAM HEARTBEAT
32 0587 04,392 2011年01月28日 カスタムメイド3D KISS
33 0584 07,348 2011年01月28日 妹ぱらだいす!~お兄ちゃんと5人の妹のエッチしまくりな毎日~ MOONSTONE Cherry
34 0580 08,776 2011年05月27日 恋ではなく ――It’s not love,but so where near. しゃんぐりらすまーと
35 0580 08,156 2011年09月30日 らぶ2Quad ま~まれぇど
36 0563 08,024 2011年09月30日 神咒神威神楽(かじりかむいかぐら) light
37 0534 07,412 2011年09月22日 シュクレ~sweet and charming time for you~ 戯画
38 0530 06,664 2011年02月25日 三射面談~連鎖する恥辱・調教の学園~ BISHOP
39 0526 06,608 2011年03月31日 鬼ごっこ! ALcot
40 0519 11,472 2011年12月16日 輝光翼戦記 銀の刻のコロナ ETERNAL
41 0512 06,864 2011年08月05日 裏教師~背徳の淫悦授業~ BISHOP
42 0490 07,248 2011年06月24日 舞風のメルト -Where leads to feeling destination- Whirlpool
43 0490 06,056 2011年06月24日 雪鬼屋温泉記 ソフトハウスキャラ
44 0473 07,948 2011年03月31日 つよきす3学期 CandySoft
45 0469 05,836 2011年01月28日 極道の花嫁 GALACTICA
46 0459 05,384 2011年06月10日 キミとボクとエデンの林檎 ALMA
47 0447 06,820 2011年09月30日 SuGirly Wish HOOKSOFT
48 0443 06,412 2011年07月29日 Princess Evangile~プリンセスエヴァンジール~ MOONSTONE
49 0429 05,960 2011年05月20日 CURE GIRL Noesis
50 0422 05,652 2011年06月24日 Hyper→Highspeed→Genius ういんどみる
51 0419 04,740 2011年04月28日 SHUFFLE! Love Rainbow Navel
52 0417 06,404 2011年01月28日 星の王子くん Leaf
53 0416 05,600 2011年07月29日 君を仰ぎ乙女は姫に PeasSoft
54 0402 06,684 2011年02月25日 Flyable CandyHeart ユニゾンシフト:ブロッサム
55 0400 05,240 2011年07月29日 時を奏でる円舞曲(ワルツ) でぼの巣製作所
56 0398 06,840 2011年11月25日 ソニコミ ニトロプラス
57 0397 06,028 2011年06月24日 マブラヴ オルタネイティヴ クロニクルズ02 アージュ
58 0393 04,684 2011年08月26日 姫騎士オリヴィア~へ、変態、この変態男! 少しは恥を知りなさい!~ シルキーズ
59 0389 05,616 2011年02月25日 蒼穹のソレイユ~FULLMETAL EYES~ SkyFish
60 0383 06,032 2011年07月29日 戦国天使ジブリール フロントウイング
61 0363 04,984 2011年02月25日 With Ribbon HULOTTE
62 0359 --,--- 2011年07月15日 えむっ娘シスターズ Apricot Cherry
63 0357 05,156 2011年05月27日 太陽のプロミア SEVEN WONDER
64 0355 03,908 2011年04月22日 いじらレンタル~エロあまおねえさんに貸し出されちゃった!!~ アトリエかぐや Honky-Tonk Pumpkin
65 0353 05,016 2011年03月31日 ぜったい絶頂☆性器の大発明!! ―処女(おとめ)を狙う学園道具多発エロ― softhouse-seal
66 0347 05,000 2011年01月28日 AQUA SORAHANE
67 0347 04,524 2011年06月24日 学園退魔! ホーリー×モーリー Frill
68 0347 04,248 2011年04月08日 デュエリスト×エンゲージ プラリネ
69 0346 04,064 2011年02月25日 巨乳ファンタジー外伝 WAFFLE
70 0339 05,084 2011年04月28日 relations sister×sister. Aile(エール)
71 0338 05,612 2011年02月25日 猫撫ディストーション WHITESOFT
72 0319 04,040 2011年03月31日 fortissimo EXA//Akkord:Bsusvier(フォルテシモ イクサ アコルト ビーサスフィーア) La’cryma
73 0299 03,768 2011年01月28日 BLOODY†RONDO 3rdEye
74 0297 04,632 2011年03月31日 シークレットゲーム CODE:Revise FLAT
75 0297 03,476 2011年02月25日 聖戦姫ヴァルキュア・シスターズ~淫闇(やみ)に堕ちたアイドル~ catwalkNERO
76 0296 03,432 2011年02月25日 姫様限定!~Princess Limited~ Princess Sugar
77 0291 03,840 2011年03月25日 それでも妻を愛してる ルネ
78 0282 02,992 2011年06月10日 ジンコウガクエン ILLUSION
79 0253 03,608 2011年05月27日 でりばらっ! -deliverance of strays- Parasol
80 0251 03,692 2011年01月28日 アネカノ~お姉ちゃんとえっちであまーいヒミツの関係~ chococo
TG : TECHGIANトップランキング(2011年上半期、2011年下半期、期間内各月2011年01月01日~2012年01月31日)