はてなキーワード: SK hynixとは
未だに「謎の半導体メーカー」程度の認識の方になぜNVIDIAが時価総額世界4位なのかをあれこれ説明する必要があるので短めにメモ。半導体業界のすみっこの人間なので機械学習まわりの説明は適当です
・~1993年 AI冬の時代。エージェントシステムがさほど成果を挙げられなかったり。まだ半導体やメモリの性能は現代とくらべてはるかに劣り、現代のような大規模データを用いた統計的処理など考えられなかった。2006年のディープラーニングの発明まで実質的な停滞は続く。
・1995年 NVIDIAが最初のグラフィックアクセラレータ製品NV1を発売。
・1999年 NVIDIAがGeForce 256発売。GPUという名が初めて使われる。以降、NVIDIAはGPU業界1位の座を守り続ける。
・2006年 GPGPU向け開発基盤CUDAを発表。以降、その並列計算に特化した性能を大規模コンピューティングに活用しようという動きが続く。
・2006年 ディープラーニングの発明。のちのビッグデータブームに乗り、これまでよりはるかに高性能なAIを模索する動きが始まる(第3次AIブームのおこり)
・2006年 CPU業界2位のAMDがGPU業界2位のATIを買収、チップセットにGPUを統合することで事実上自社製品をNVIDIAと切り離す戦略に出る。CPU業界1位のインテルも、同じく自社CPUに自社製GPUを統合する動きを強める。NVIDIAはこれまでの主力だったGPUチップセット製品の販売を終了し、データセンター向けGPGPUのTeslaシリーズ、ゲーム用外付けGPUのGeForceシリーズ、ARM系CPUと自社GPUを統合したTegraシリーズの3製品に整理する。このうちTeslaシリーズが性能向上やマイクロアーキテクチャ変更を経て現代のAIサーバ製品に直接つながる。GeForceシリーズはゲーマー向け需要や暗号通貨マイニング向け需要も取り込み成長。Tegraシリーズは後継品がNintendoSwitchに採用される。
・2012年 ディープラーニングが画像認識コンテストで圧倒的な成績を収め、実質的な第3次AIブームが始まる。
・2017年 Transformerモデル発表。これまでのNN・DLと異なり並列化で性能を上げるのが容易=デカい計算機を使えばAIの性能が上がる時代に突入。
・2018年 IBMがNVIDIAと開発した「Summit」がスパコン世界ランキング1位の座を5年ぶりに中国から奪還。全計算のうち96%がGPUによって処理され、HPC(ハイパフォーマンスコンピューティング)におけるGPUの地位は決定的になる。NVIDIAの開発したCPU-GPU間の高速リンク「NVLink」が大規模に活用される。「Summit」は2020年に「富岳」にトップを奪われるまで1位を維持。
・2018~2021年 BERTやXLNet、GPT2など大規模言語モデルの幕開け。まだ研究者が使うレベル。
・2019年 NVIDIA CEOジェスン・ファン(革ジャンおぢ)が「ムーアの法則は終わった」と見解を表明。半導体のシングルスレッド性能の向上は限界に達し、チップレットを始めとした並列化・集積化アーキテクチャ勝負の時代に入る。
・2022年 NVIDIAがH100発表。Transformerモデルの学習・推論機能を大幅に強化したサーバ向けGPUで、もはや単体でもスパコンと呼べる性能を発揮する。H100はコアチップGH100をTSMC N4プロセスで製造、SK Hynix製HBMとともにTSMC CoWoSパッケージング技術で集積したパッケージ。※N4プロセスは最新のiPhone向けSoCで採用されたN3プロセスの1つ前の世代だが、サーバ/デスクトップ製品向けプロセスとモバイル製品向けプロセスはクロックや電流量が異なり、HPC向けはN4が最新と言ってよい。
・2022年 画像生成AIブーム。DALL-E2、Midjourney、Stable Diffusionなどが相次いで発表。
・2022年 ChatGPT発表。アクティブユーザ1億人達成に2カ月は史上最速。
・2023年 ChatGPT有料版公開。Microsoft Copilot、Google Bard(Gemini)など商用化への動きが相次ぐ。各企業がNVIDIA H100の大量調達に動く。
・2024年 NVIDIAが時価総額世界4位に到達。半導体メーカー売上ランキング世界1位達成(予定)。
こうして見るとNVIDIAにとっての転換点は「ディープラーニングの発明」「GPGPU向けプログラミング環境CUDAの発表」「チップセットの販売からコンピューティングユニットの販売に転換」という3つが同時に起こった2006年であると言えそう。以降、NVIDIAはゲーマー向け製品やモバイル向け製品を販売する裏で、CUDAによってGPGPUの独占を続け、仮装通貨マイニングやスパコンでの活躍と言ったホップステップを経て今回の大きな飛躍を成し遂げた、と綺麗にまとめられるだろう。