はてなキーワード: 2zとは
r^2=x^2+y^2+z^2の全微分の右辺が2rdrになるのはなぜですか?drにならないのはなぜですか?
r^2 = x^2 + y^2 + z^2 は、3次元空間における球の方程式であり、rは球の半径を表します。
d(r^2) = d(x^2 + y^2 + z^2)
左辺は、r^2 の微小な変化量 dr に対応する微分を表します。右辺は、x, y, z が微小に変化する場合の変化量を表します。
右辺を展開すると、以下のようになります。
d(x^2 + y^2 + z^2) = 2x dx + 2y dy + 2z dz
ここで、x, y, z は球の中心を原点とした座標系であり、dx, dy, dz は微小な変化量です。この式を見ると、dx, dy, dz の係数が2倍になっていることがわかります。
したがって、r^2 = x^2 + y^2 + z^2 の全微分の右辺は、2rdr になります。drにならない理由は、微小変化の一つである微小変位(dx, dy, dz)が直交座標系で考えると、球体表面に沿っての変化ではなく、球体内部での変化として扱われるためです。
すみません。左辺の話でした。
それとr^2の微小な変化量はd(r^2)ですよね。つまりなぜd(r^2)=2rdrになるのか知りたいのです。
一変数関数における合成関数の微分の公式を使ったときの実行結果に形が似ているように見えますが、今回は全微分ですし、三変数なので合成関数の微分の公式を使って求められるものではないですよね。
申し訳ありません、回答が不十分でした。
d(r^2) = 2rdr となる理由は、r^2 = x^2 + y^2 + z^2 という式の両辺を微分すると、
d(r^2) = d(x^2 + y^2 + z^2) = 2x dx + 2y dy + 2z dz
となります。ここで、x, y, z はそれぞれ r = sqrt(x^2 + y^2 + z^2) によって求められる値であり、その微分は
dx = x/r dr, dy = y/r dr, dz = z/r dr
となります。これらを代入すると、
d(r^2) = d(x^2 + y^2 + z^2) = 2x dx + 2y dy + 2z dz
= 2x(x/r dr) + 2y(y/r dr) + 2z(z/r dr)
= 2(x^2 + y^2 + z^2)/r dr
= 2r^2/r dr
= 2r dr
となります。ここで、r = sqrt(x^2 + y^2 + z^2) を用いました。このようにして、d(r^2) = 2r dr となることが示されます。
dx/dr=x/rになることを途中式を添えて解説してください。私が計算したら
dr/dx=sqrt(x^2 + y^2 + z^2)/dx=2x/2sqrt(x^2 + y^2 + z^2)=x/rとなり、あなたの答えとは分子と分母が逆転しています。
申し訳ありません、間違えておりました。正しくは、
r = sqrt(x^2 + y^2 + z^2) という式の両辺を微分すると、
dr/dx = x/sqrt(x^2 + y^2 + z^2) = x/r
となります。これは、xを微小に変化させたときのrの変化量(dr)と、xの変化量(dx)の比率を表しています。したがって、
dx/dr = 1/(dr/dx) = r/x
となります。これは、rを微小に変化させたときのxの変化量(dx)と、rの変化量(dr)の比率を表しています。これより、
dx/dr = x/r
dx/dr = 1/(dr/dx) = r/xとdx/dr = x/rでは言ってることが食い違っているように見えますが
ご指摘ありがとうございます。私の回答に誤りがありました。正しくは、以下のようになります。
r = sqrt(x^2 + y^2 + z^2) という式の両辺を微分すると、
dr/dx = x/sqrt(x^2 + y^2 + z^2) = x/r
となります。これは、xを微小に変化させたときのrの変化量(dr)と、xの変化量(dx)の比率を表しています。
したがって、
dx/dr = 1/(dr/dx) = r/x
となります。これは、rを微小に変化させたときのxの変化量(dx)と、rの変化量(dr)の比率を表しています。
この式変形において、一つ目の等号は両辺の逆数を取ることで成り立ちます。二つ目の等号は、1/(r/x) = x/r という式変形によって得られます。
なんで一つ目も二つ目も左辺はdx/drなのに二つ目だけいきなり逆数とるんや…
x,y,zを単位ベクトルとしたとき、|x-y|^2+|y-z|^2+|z-x|^2が最大となる状況を考える(なぜこんな関数なのかというと計算しやすそうだから)
|x-y|^2+|y-z|^2+|z-x|^2=2|x|^2+2|y|^2+2|z|^2-2x・y-2y・z-2z・x
=3|x|^2+3|y|^2+3|z|^2-|x|^2-|y|^2-|z|^2-2x・y-2y・z-2z・x
=3+3+3-|x+y+z|^2
≦3+3+3
で、x+y+z=0のときに等号成立して最大となる
x,y,zがなす三点はある平面上にあって、重心0=(x+y+z)/3も同じ平面上にあるので、x,y,zがなす平面は原点を通る。つまりその平面で球を切ると大円になる
最大となるのはどのような状況かというと
1=|x|^2=|y+z|^2=|y|^2+|z|^2+2y・z=2+2y・z
よってy・z=-1/2
同様にしてx・y=y・z=z・x=-1/2
なので各点のなす角は120°
集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。
K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。
C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である。
L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)が存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。
そのような多項式が存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。
なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式
X^2 -(z + z*)X + zz* = 0
の解だから。
Kを体とする。K上の任意の多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで
と一次の積に分解する。このようなLのうち最小のものが存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である。
LをFの分解体とする。Lの部分環Vを
K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))
の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるから、aiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元のベクトル空間である。
Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像は全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である。
Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである。
さて、Lの元でK上のいかなる多項式の根にならないものが存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□
L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限次代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。
M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。
α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。
[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つものが存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。
Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。
任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。
L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。
L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。
[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 - aX + b = 0の異なる2解。
α∉Kより、K⊕KαはK上2次元のベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。
σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□
C/RはGalois拡大。
L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。
L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである。
K(α)/Kが正規拡大で、さらにαの最小多項式が重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。
nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である。
L/Kを有限拡大とする。任意のα∈Lの最小多項式が重根を持たないとき、L/Kは分離拡大という。
体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。
F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。
実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。
L/KをGalois拡大、Gal(L/K)をGalois群とする。
K⊂M⊂Lとなる体Mを、L/Kの中間体という。
部分群H⊂Gal(L/K)に対して、L^H := {a∈L| 任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。
逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。
次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。
L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。
- H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
- K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
- 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
- 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
- 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。
K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである。
この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。
https://www.nicovideo.jp/watch/sm36233489
また紫の重さを x, 黄の重さを y, 橙の重さを z とします。
与式は以下の通りです。
x+2 > y+z+1
x+z > y+2
x+z = 2z+2
y+1 = z+2
===
それぞれを整理すると
x+1 > y+z ... (1)
x+z > y+2 ... (2)
x = z+2 ... (3)
y = z+1 ... (4)
---
(1) について (3), (4) より
x+1 > y+z
⇔ 2 > z ... (5)
---
(2) について (3), (4) より
x+z > y+2
⇔ (z+2)+z > (z+1)+2
⇔ 2z+2 > z+3
⇔ z > 1 ... (6)
---
(5), (6) より
2 > z > 1 ... (7)
---
(7), (3) より
2 > z > 1
⇔ 4 > z+2 > 3
⇔ 4 > x > 3 ... (8)
---
(7), (4) より
2 > z > 1
⇔ 3 > z+1 > 2
⇔ 3 > y > 2 ...(9)
---
(7), (8), (9) より
x > 3 > y > 2 > z > 1 ... (10)
===
本題は 3 = Ax+By+Cz を満たす A, B, C を求めることです。ただし A, B, C は非負の整数です。
(10) より、
3 > y > 2 なので B は 0 または 1 ですが、 B = 1 のとき C = 1 とすると 3 を超えてしまう ( y + z > 3 ) ため、やはり B = 0 であることがわかります。
うん、その何を間違いとするのかに段階があるよね。という話。
詩人(天文学者)はすべての、物理学者は一つの、数学者は少なくとも一面が、哲学者はそれは羊なのか。
それぞれに求められる段階の厳密さで話をしてる。
中学校の国語と、大学の論理学で求められる厳密さは同じなのだろうか?
「書いていないことはないものとする」という公理(その段階が浅いかどうかは別にして)を前提にした正当な論理はあるのではないか?
例えば、大学入試で三角形の内角の和を問う問題で、曲率0(ユークリッド空間)であることを明記している問題を見たことはないよ。
それを書いていないことを慮る忖度と言っても間違いではないし、前提を疑える可能性はあるけれど、その厳密さは国語に限らずどの教科でも求められてはいないよね。
すべての問に対して、「回答できるほど厳密でないので不定」という答えは誰も望んでない。
と答えないのと同様に