「レーザー核融合」を含む日記 RSS

はてなキーワード: レーザー核融合とは

2021-09-24

核融合2030年代に実現とか何言ってんの?って人への解説(補足あり)

自民党総裁候補高市早苗さんが2030年代に実現する(最初2020年代)と言って話題になった核融合高市さんのキャラもあってか「そんなもんできるわけねーだろ」的に扱われることもあるが、実は世界核融合ベンチャー企業では「2030年代に核融合実現」を掲げて100億以上投資を受けている企業複数あるので、業界としてはさして驚きはないのである。というわけなので、いくつかの核融合ベンチャーと、官製核融合実験であるiterについて簡単にまとめてみる。

iter (炉型: 保守的トカマク 日・米・露・中・韓・印・EU)

冷戦終結の一つのシンボルとして米露が共同で建設を決めていたiterに、単独実験炉を作るのを予算的に躊躇していた各国が相乗りしたのが現iter体制である

建設地決定の遅れや、上記の各国が機器を持ち寄って組み立てるという、みずほ銀行勘定システムばりにカオス体制のために建設は当初予定から20年近く遅れ、2025年初稼働(テストみたいなもん)、本格稼働は2035年という状況になっている。実はこの遅れが核融合ベンチャーが乱立する現在を作ったと言っても過言ではない部分があって、というのも、核融合ベンチャーにはiter予算が取られて食い詰めた研究者が立ち上げた組織が多いのである

形式保守的ドーナツ型のトカマク。国際協調なのであまり斬新なアイデアは盛り込まれず、磁石昔ながらの低温超伝導導体を使う。

投入エネルギー10倍程度の核融合エネルギーを出すことを目指すが、投入"電力"ではないため、正味マイナス。発電設備も持たない。ここで得た知見を元に発電を行う"原型炉"を設計する、というのが各国政府公式計画(ただし予算は決まってない)である

Tokamak Energy (炉型: 球状トカマク 英国)

iterなどの保守的トカマクが、よくあるドーナツ的な形のプラズマを作るのに対して、球状トカマクは球の真ん中に細い貫通穴を通したような形状をしているのが特徴。球状トカマクは磁場を使ってプラズマを閉じ込める(押し込める)のに有利ではあることがわかっているものの、まだ高温・高密度での実績は弱い。

トカマクエジーは高温超伝導導体で球状トカマクの磁石を作ることを目指している。球状トカマクは保守的トカマクに次いで実績があるので(日本には九州大学にQUESTという中型装置がある)核融合ベンチャーとしては「目新しさ」は弱いものの、逆に堅さがあるともいえるだろう。米国プリンストン大学(NSTXという装置燃えて止まっている)とも連携しているらしく、そういう意味でもチームが強い。

すでに100億以上の資金調達しており、堅実に装置を作って稼働させている。すでに1500万度程度のプラズマを実現している(年内にはこの装置で1億度を目指す)ため、単純な段階としては核融合ベンチャートップランナーと言って良い。(世界最高温度1000億単位かかった日本JT-60Uの5.2億度)

2030年までに電力を電力網に送り出すことを目標としている。

装置が卵っぽくてかわいい

Commonwealth Fusion Systems: CFS(炉型: トカマク 米国 MIT

MITのチームがベースになって設立した核融合ベンチャー。もともとMITはAlcator C-modというトカマクを持っていたが、CFSはこれをベースにしたARCという核融合炉を提案している。現在はその前段階装置であるSPARC建設である

Alcator C-modは小ぶりながら、世界最強の高磁場(最大8T)を作れるトカマクとして、他では真似できない成果を出していてプラズマ業界では存在感があったものの、2016年に完全にシャットダウンした。それと前後して元々力のあったMITの高温超伝導研究者とAlcator c-modプラズマ研究者がタッグを組んで提案したのが、ARCである

2030年代にはSPARC(商用炉でないものの投入電力より大きな出力を出すことを目指している)を稼働させることを目指しているので、ほぼtokamak energyと同じ目標を少し遅めの日程で掲げていると言ってよいだろう。

ARCという名前は、どう見てもアイアンマンアークアクターに引っ掛けているのだけど、残念ながらロバートダウニーJrは再エネ関連に投資しているようでアイアンマンとのシナジーはないようだ。

General Fusion(炉型: MTF カナダ)

MTF(磁化標的核融合方式)と呼ばれる方式核融合炉を目指すカナダベンチャー。この企業CEOの人のカリスマ的なやつで早期にお金を集めたという印象がある。CFSやtokamak energyがトカマクによる磁場閉じ込めでの長い歴史と実績(90年代米国MIT装置ではないが1000 kWを超える核融合出力を実現している)とチームの長い研究歴を背景に、ある種の堅実さをアピールしている一方で、MTFテーブルトップでの成果も出ていない状態からスタートアップを初めている。液体金属をぐるぐる渦巻かせて中心に空間を作り、そこに吹き込んだプラズマを液体金属で爆縮して断熱圧縮で高温にするというシステムである。野心的であるということはゲームチェンジャーになりえるということであるが、一方で論文などの試算はかなり大雑把なものなので(プラズマや液体金属がうねったりせずにすごくきれいに断熱圧縮される計算)、「そんなきれいに押しつぶされてくれるもんかねぇ?」という印象を持っている人は多いだろうと思われる。

装置ピストンがでかいので見栄えがする。

TAE Technologies (炉型: FRC 米国

メジャー核融合ベンチャーの中では多分最古参企業で、おそらく最大の資金投資を受けている企業。FRCという、トカマクなどとは異なる磁場閉じ込め形式を目指す。FRCはプラズマを閉じ込める磁場を、コイルではなくプラズマの動きで作る。5000万度を達成済で、2030年までに発電実証目標としている点はCFSやtokamak energyと同じ。FRCは高温は作れてもプラズマを安定して維持する能力は低いので、5000万度を作ったからかといって他より先に進んでいるかというとそんなことはないが、装置を作りまくって成果を出しているのは確かである。元々は陽子とボロンの核融合反応を使った発電を目指しており、その反応で出る3つのアルファ粒子に由来して"Tri Alpha Energy"という名前だったのだが、今は他の形式と同じ重水素三重水素を使った発電を直近の目標とした(陽子ーボロンも捨ててないらしい)ためTAE名前が変わったらしい。

かいところはよく知らないが、核融合一辺倒ではなく、応用技術特許化などで収益をだしているらしく、そこはすごい。

装置名が「ノーマン(現行)」「コペルニクス」とかっこよいのも特徴。

京都フュージョニアリング(炉型: なし 日本 京都大学)

京都大学小西教授が率いる日本初の核融合ベンチャー小西教授核融合ブランケット(後述)を専門にしている人で、一般向けエネルギー関連書籍を出してたりしている。

ただし、この会社核融合炉全体を設計するのではなく、ブランケット核融合で出た中性子を受け止めて熱に変換するところ)の設計を売る会社である海外などのプラズマ屋さん主導の核融合ベンチャーは、ブランケット設計はあまり注力していないところが多いので、そういうベンチャーに「あんたの炉はこんなブランケットおすすめですよ」と設計を売るのが仕事。まぁベンチャー目的なんて投資額と投資家の意思でどうにでもなるといえばそうなので、お金が予想外に集まれプラズマ屋さんも集めて核融合炉全体の設計製作だってやるのかもしれないが、さしあたり核融合自体を作る予定はなさそうである。ほかもそうだが、日本ベンチャーはこの2年でようやく2つ立ち上がっただけなので、今は正直海外と比べると桁違いに規模が小さいし弱い。ここも表に出ている研究者は一人だけである

Webサイト小西先生ちょっと疲れているように見えるのが気になる。

EX-fusion (炉型: レーザー 日本 光産業創成大)

2019年創業。"日本初のフルスタック核融合ベンチャー"をうたう企業。光産業創成大(浜松ホトニクスという企業が作った大学院大学)の研究者設立したらしいが、新しいため詳細は不明。"フルスタック"という言葉はよくわからないが、京都フュージョニアリングブランケットのみの開発を売っていることと対比して、核融合炉全体を見て実現を目指すという意味だろうと思われる。レーザー核融合米国NIFの2010年代の大コケにより世界的に元気がないので、生き残りをかけているのだろう。日本レーザー核融合といえば大阪大学レーザー研があるが、こことどの程度の連携をするかなども詳細不明である

ちなみに、"EX-Fusion"で検索すると、ドラゴンボール関連ゲームでの同名の設定のほうが上位に表示される。

Helical-Fusion(炉型: ヘリカル? 日本 核融合科学研究所)

Webサイトのみ公開されている未設立企業。まだ設立すらしていないので何もかも謎だが、噂では日本核融合科学研究所のチームが作るようだ。核融合科学研究所は1億度を超えるプラズマの実績のあるヘリカル型(トカマクとは違うよじれたコイルが特徴)の装置保有しているのだが、近々シャットダウンを予定している。その後は新規の大型装置予算が確保できないために小型設備での基礎研究に舵を切るとされているため、内部の核融合発電所を本気で作りたい一派が起業するらしい。日本で"ヘリカル型"といえばここか京都大学なので、名前からしてどっちかであるのは確かだろう。

この記事に続く補足を書いたよ(9/25)

https://anond.hatelabo.jp/20210925153855

2019-07-08

anond:20190708145212

原発必要悪なのは分かるけど、なんで2019年にこの話題を出してるんだ?

内容には同意できるけど、意図が分からないよ。

選挙の争点にもなってるのかな。

反原発論者の人って何考えているか調べたことないけど、います原発をやめろ、ってことを主張してるんだよね?

恐らく地震だったり、あるいはミサイルの標的にされたりして危ない、ってことがその根拠だと思う。

そうなると増田手紙はそういう主張には答えていないことになるよ。

それに安定的な電力供給にしたって、たとえば福島警戒区域に大規模な太陽光発電風力発電を作ったり、大規模な蓄電施設を作ったりすれば実現可能なんじゃない?

だって夜間には捨てている電力だってあるし、そういうのはなんで活用できないんだろ?

実現性や採算性がないからだと思うけど、ちゃん検証してみたのだろうか?)

それに新しい電力源として、太陽"熱"発電や、重油産生藻類による有機燃料生産ってのもある。

(熱核融合とかレーザー核融合とか、安全な方の核を使う方法もあると思うけど、これはまだまだ先だろうしな)

原発を期限を設けずになーなーで使っていたら、普及しそうなものも普及しなくなっちゃうんじゃない?

こういう手段をもってしてもやっぱり原発じゃないとダメなんだ、ということをもっと明快に語ってくれないと、反原発論者は聞き入れないと思うよ。

面倒くさいと思うけど、考えられる可能性をすべて先回りして列挙しつつ論破しないと、誠実な主張とは言えないと思う。

2012-07-26

レーザー核融合が500TWを出力、という記事とNIFの話

レーザー核融合反応の実験成功クリーンエネルギー実現か=米国」という表題の記事がひどい。という話。

http://news.searchina.ne.jp/disp.cgi?y=2012&d=0720&f=it_0720_001.shtml

大元の記事だと思われるアメリカのローレンスリバモ国立研究所プレスリリースが下記。題は「National Ignition Facility makes history with record 500 terawatt shot」

https://www.llnl.gov/news/newsreleases/2012/Jul/NR-12-07-01.html

この元記事の題名を見るだけでも大まかにわかるとおり、LLNLの発表した内容は核融合反応に関するものではなく、レーザーに関わるもの。おおざっぱに言うと「安全保障(要は水爆関連)や基礎研究核融合発電などの研究に用いる大強度レーザー装置の増強、整備によってついに500TWのピークパワーを持ったレーザー発振に成功した」という内容。ちなみに「地下核実験不要にする唯一の施設」なんて書かれてたりして、実は核融合エネルギーについては大して書かれていない。

そんなわけでサーチナの記事とその元になったチャイナネットの記事はなぜかこれを「核融合成功して500TWを出力」という記事に書き換えていているという意味で間違っている。が、間違いはそれだけではない。レーザー核融合は「レーザーを燃料球に当てて爆縮し、核融合反応を起こす」ものであるにもかかわらず「「衝撃点火」方式による人類史もっとも威力のあるレーザー光線の放射」と表現していて、あたか核融合反応によってレーザー放出されたかのように書かれているので因果真逆になっている。ちなみに「衝撃点火」という言葉は元のプレスリリースには含まれておらず、チャイナネット記者勝手に付け加えたもの。衝撃点火は阪大レーザー研が概念として提案している核融合反応の点火手法の一つで、未だ実験は行われていないしLLNLは中心点火なのでこれまたおかしい。

あとついでにNIFの話

LLNLのNIFは核融合研究のための世界最大のレーザー発振施設な訳だけど、実際は水爆シミュレーション施設としての機能が強い(というか予算安全保障メイン)。NIFの実験は間接照射の中心点火といって、「金の円筒内部にレーザーを照射、発生したX線で燃料球を加熱、爆縮して核融合を起こすシステム」だが、これは水爆の「原爆の起爆によって発生したX線などによって燃料球を爆縮、起爆する」に近いプロセスで、こういう実験によって水爆関連の研究を行っていることがNIFを「地下核実験不要とする施設」だと評価する理由であり、NIFが高速点火(阪大などがより核融合発電向きであるとして提唱する点火手法)を採用しない要因になっていると考えられている。(高速点火には主加熱源よりも短パルスな加熱が必要だが、核弾頭にそんなものは組み込めない)

一方で日本阪大や光産業創成大学なんかがやっている高速点火は「発電炉」に特化した研究が行われている。たとえば「大出力・高繰り返しの半導体レーザードライバーの開発」「発電炉に必要な1秒に10回程度の核融合反応」「1秒に10個使われる燃料球をリアルタイム生産するシステムの開発」などである

阪大も光産業創成大もレーザー出力はNIFに数段、もしくは数桁劣るものの、「核融合発電」研究最先端日本であると言って過言ではない。

ちなみに、もう一つの核融合電コンセプトであるところの磁場閉じ込め核融合現在フランス国際協力下でITERと呼ばれる実験炉(発電可能レベルプラズマの数分の保持やより長時間の保持、商用発電炉で用いるコンポーネントの実証が目的)を建設中であり、未だ実験炉の設計すら始まっていないレーザー核融合に比べると数歩は先を行っているのが現状である

 
ログイン ユーザー登録
ようこそ ゲスト さん