はてなキーワード: ミンコフスキー空間とは
三次元時間(x,y,z,)という概念に時間(ct)を取り入れたx,y,z,ct(時間)を4次元空間と呼び、これをミンコフスキー時空という。
空間と時間の各成分の2乗を足すときに、時間の前の係数を-1 にして足すことによって不変量、すなわち長
さを求めることができる。計量の各成分の符号が異なるような空間をミンコフスキー空間
とよび、また、その計量はミンコフスキー計量という
なるほどな(さっぱりわからん)
せかいせん
相対性理論で用いられる物理用語で、四次元空間に表現される質点の運動の軌跡。物理的な事象は、ある場所、ある時間に起こるが、これを時間・空間を一体化した四次元空間(ミンコフスキー空間)で表すと、一つの点となる。これを世界点という。このような事象が一般には場所を変えながら、時間的に次々に起こるようすを四次元空間で表現すると、世界点が連なった世界線として表される。たとえば、ある点が存在するという事象は、一つの世界点で表現することができ、事象の連なりは世界線に沿う運動で表される。もし、この点が空間座標に対して静止していれば、世界線は時間軸方向に進む。また空間的に運動している場合、運動が一定の速度であれば、その運動は直線となり、それ以外では曲線となる。
ある世界点を通る光の世界線の集合は光円錐(こうえんすい)の面を形づくる。そしてこの面上の点を経過して未来に進む世界線はつねにこの光円錐の内側にとどまっている。これは物体の速度が光速以下であるからであり、ブラック・ホールの性質を局所的にもっている。[佐藤文隆]
あっとるやんけ!
増田がそう思うのは、僕らがこの世界を3次元ユークリッド空間と認識しているからだろうね。
実は両目に映っているのは2次元の画像なのだけれども、その視差を利用して3次元であると認識しているらしい。
僕らの脳はずいぶん高度なことをやっているのだ。
ところで、どうやらこの世界は少なくとも特殊相対論においては 空間3次元+時間1次元 の4次元空間(ミンコフスキー空間)だということがわかっている。(量子化された一般相対論によるともっと高次元のようだけれどもここでは置いておく)
それなのに僕らはガリレイ変換を自然だと考え、ローレンツ変換を不思議に思う。(電車から外を見て、木が動いていると感じる人はいないだろう。一方でローレンツ収縮を僕らは不思議に感じる)
これはどういうことだろうか?
産まれてから爆発的に増えたニューロンはあるときから急激に減りはじめ、5歳くらいで落ち着くそうだ。
幼児期に聞き分けられた r の音が、日本人はある年齢になると聞き取れなくなることで有名だね。
動物を使った実験で、産まれてすぐの赤ちゃんに目隠しをしていると永遠に視力が失われることが知られている。
人間を使った実験はないが、幼児に眼帯をしているとやはり視力が失われることが知られている(ただし、その後のトレーニングで回復可能)
(3Dテレビは5歳以下の幼児には見せないでというのはこの辺りに起因する)
もしかしたら、僕らがこの世界を4次元ミンコフスキー空間と知覚出来ないのは