2023-01-22

GPT医療現場で使われる可能性について聞いてみた (つづき2)

「つづき」で気になった箇所を深掘り。確認するに、専門家の監修体制の構築はそれほど難易度は高いように思えなかった。やはり「つづき」で応えてくれた「医療用の学習データGPT側で定期的に用意できるか」が今後の発展のポイントになりそうだ。

まずはAttention機構の深掘り

Me:

GPTのAttention機構って何?

GPT:

Attention機構は、自然言語処理タスクにおいて、入力文の中から重要な部分を選択し処理するためのアルゴリズムです。GPTは、Transformerと呼ばれるモデルアーキテクチャ使用しています。Transformerは、Attention機構を利用して、入力文中の各単語関係性を学習します。これにより、モデル入力文全体を理解し、より質の高い出力を生成することができます

Me:

GPT医療知識が弱いと聞くけど、このAttention機構の仕組みと関係ある?

GPT:

GPTは、学習データに基づいて学習されます。そのため、学習データ医療に関する知識が少ない場合GPT医療に関するタスクに対して劣る結果を生成する可能性があります。Attention機構は、入力文中の各単語関係性を学習するために利用されていますしかし、Attention機構自体は、学習データに基づいて学習されるため、学習データ医療に関する知識が少ない場合、Attention機構医療に関するタスクに対して劣る結果を生成する可能性がありますしかしながら、GPTには大量のテキストデータ学習し、自然言語処理タスクに対して高い性能を発揮する能力があり、知識を持っていない領域でも新しい知識を得る能力を持っています。そのため、医療に関するタスクGPTに与える場合は、十分な医療に関する学習データを与えることで、GPT医療に関するタスクに対しても高い性能を発揮することが期待できます

Me:

ポイントは、Attention機能医療用にチューニングするのではなく、医療データ学習データとして与えることが、GPT医療分野への強化に繋がるんだね。

GPT:

そうですね。Attention機構は、入力文中の各単語関係性を学習するためのアルゴリズムです。GPTは、学習データに基づいて学習されます。そのため、学習データ医療に関する知識が少ない場合GPT医療に関するタスクに対して劣る結果を生成する可能性があります。それに対して、十分な医療に関する学習データを与えることで、GPT医療に関するタスクに対しても高い性能を発揮することが期待できます。そのため、Attention機能医療用にチューニングするのではなく、医療データ学習データとして与えることが、GPT医療分野への強化に繋がるということになります


次ぎに専門家の監修について深掘り

Me:

GPT医学的な正確性や専門性を獲得するには、意思決定者としての専門家の監修が必要という認識だけど、仮にそれが可能になった場合GPT医療現場で使われるようになると思う?

GPT:

GPTは、大量のテキストデータ学習し、自然言語処理タスクに対して高い性能を発揮する能力がありますしかしながら、GPT人間主観判断力を持っていません。そのため、GPTが生成する出力は必ずしも正確であるとは限りません。そのため、医療現場GPT使用する場合は、専門家による監修が必要です。専門家は、GPTが生成する出力が正確であるかどうかを判断し、必要に応じて修正を行うことができます。これにより、GPTが生成する出力が正確であることが保証され、安全かつ効果的な医療提供することができます。そういった意味で、GPT医療現場で使われるためには、専門家による監修が必要であり、GPTはその監修に基づいた情報提示などに利用されることが考えられます

Me:

ユースケースとしては何が考えられる?

GPT:

GPTは、自然言語処理タスクに対して高い性能を発揮する能力があるため、医療現場での様々なタスクに利用することが考えられます。例えば、医療文書自動生成や翻訳、診断支援治療プランの生成、疾患の予防に関するアドバイスの生成などが挙げられます。また、GPTは大量のテキストデータ学習することで、新しい知識を得る能力を持っているため、医学研究や新しい薬物の開発にも利用することができます。ただしながら、これらのタスクにおいてもGPTが生成する出力は必ずしも正確であるとは限らないため、専門家による監修が必要です。

Me:

専門家の監修は、GPTユースケースの内、どのフェーズ必要になると思う?

GPT:

GPTが生成する出力が正確であることを確認するために、専門家による監修が必要になります。そのため、GPTを利用する各フェーズ専門家の監修が必要になることが考えられますこれにより、GPTが生成する出力が正確であることが保証され、安全かつ効果的な医療提供することができます

Me:

フェーズごとにその適用難易度を教えて。

GPT:

フェーズごとに適用難易度は異なりますが、概ね以下のようになりますただし、これらは一般的な話であり、実際には、専門家がそれぞれのフェーズにおいて監修するために必要スキル知識は、それぞれのアプリケーションタスクによって異なります

Me:

しかに生成フェーズにおける出力のパターンは他のフェーズと比べ管理しづらそうだけど、その難易度を調節するための工夫はあったりするの?

GPT:

生成フェーズにおいて、GPTが生成する出力を確認し、修正するための難易度を調節するための工夫には以下のようなものがあります:これらの工夫により、GPTが生成する出力を確認し、修正するための難易度を調節することができます。また、専門家確認する作業効率化することで、より多くのGPTが生成する出力を確認することができ、正確性や適切性が高い出力を得ることができます


最後に出力フォーマットの深掘り

Me:

GPTが生成する出力のフォーマット定義するにはどうすれば良いの?

GPT:

GPTが生成する出力のフォーマット定義するには、次のような方法がありますこれらの方法を組み合わせることで、より正確かつ適切なフォーマット定義することができます

Me:

GPTの出力テンプレート使用方法を教えて。

GPT:

GPTの出力テンプレート使用するには、以下のような手順を踏むことができます
  1. 出力テンプレート作成: GPTが生成する出力のフォーマット定義し、テンプレート作成します。例えば、診断書フォーマットや手術手順の書き方など。
  2. GPTテンプレート学習させる: GPTに、作成したテンプレート学習させます
  3. GPT入力を与える: GPTに、入力として必要情報を与えます
  4. GPTが生成する出力を確認: GPTが生成した出力が、事前に定義したテンプレートに沿っていることを確認します。
  5. 修正を行う: GPTが生成した出力が、事前に定義したテンプレートに沿っていない場合は、修正を行います
このように、GPTの出力テンプレート使用することで、GPTが生成する出力のフォーマットを明確に定義することができ、専門家確認する作業を簡略化することができます。また、テンプレート学習させることで、GPTが生成する出力が予め定義したフォーマットに沿っていることを保証することができます

Me:

GPTテンプレートスキーマの違いを教えて。また、プリセットと何が違うのかも教えて。

GPT:

GPTテンプレートスキーマは、出力フォーマット定義するための方法であり、それぞれ異なる特徴がありますまりテンプレート文章フォーマット定義するのに、スキーマデータ構造定義するのに、使用します。プリセットは、テンプレートスキーマのような事前に定義したパターンデータ構造使用することができます。ただし、プリセットは、具体的には何を指すかは定義が異なります

Me:

Pythonのopenaiライブラリテンプレートスキーマを再定義することは可能?

GPT:

はい、openaiライブラリは、新しいトレーニングデータテンプレートスキーマを含むように、GPTモデルファインチューニングすることができます。 openai.Completion.create()メソッド使用して、GPTモデルファインチューニングすることができ、トレーニングデータテンプレートスキーマファインチューニングパラメータ指定することができます。また、openaiは既にテンプレートスキーマが組み込まれモデル提供しており、それらを直接使用することができます

Me:

`openai.Completion.create()` メソッドテンプレートスキーマを再定義する方法を教えて。

GPT:

openai.Completion.create()メソッド使用して、GPTモデルファインチューニングするには、次のようにします。このように、openai.Completion.create()メソッド使用して、GPTモデルファインチューニングし、テンプレートスキーマを再定義することができます。ただし、学習データとして適切なものを選び、ファインチューニングパラメータを調整する必要がありますので、注意が必要です。また、トレーニングデータとして使用するテンプレートスキーマによっては、モデルの性能が改善しないこともあるため、適切なものを選ぶことが重要です。また、ファインチューニングを行うためには、足りないデータ時間計算リソース必要です。

Me:

当該メソッド用のファインチューニングパラメータは `prompt` を使うんだよね?

GPT:

はい、openai.Completion.create()メソッドでは、promptパラメータ使用して、GPTモデルに対して、生成したい文章フォーマットデータ構造指定することができます。このpromptによって、GPT指定されたフォーマットデータ構造に従って文章を生成するように学習します。このpromptには、テンプレートスキーマを含む文章指定することで、GPT学習させることができます
記事への反応 -

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん