2023-01-27

国語の成績が良く読解力が高い人は数学もできるのでは?

そういう人で数学の成績がそれほどでなかったり大学数学を専攻している人というのが少ないのは、根本的に数学に対して能力がないのではなく、数式には文章と違って情感みたいなものがないとかいった理由愛着を持てないからだと思います

それで熱心に学ばないからそうなってるだけで、彼らのような類に数学勉強強制させたらそれこそ大化けして並みの数学者を凌駕する理解力を発揮するのではないでしょうか?

かに高校時代まで重視される計算力(速さ)という意味数学力は読解力とかすりもしない概念でしょう。

しか大学に入ってまず習う位相や集合の理解にしてもあのページが進むごとに論理的に入り組んでいく解説についていくということについてはまさしく国語で成績を取ってきたのと共通する読解力がものを言うように思えてなりません。逆にあれを理解するのに要する読解力と小説なり評論なりの問題を解くのに要する読解力とでどこに違いがあるのか探す方が難しいでしょう。

双対原理事典での説明を私が見ても、パスカル定理ブリアンションの定理双対性が、束の外延内包双対性が成り立つからその特殊場合として明らかに成り立つものなんだと言えるという趣旨に対して、束という遥かに抽象的な形式論理のなかで成り立ってることがあの目で見える形で定理妥当性が明らかな射影幾何双対性に一般特殊関係のなかでどうつながってくるというんだとさっぱり納得感がないわけです。

(というか双対の「原理」とかいっちゃってるけど、それはパスカル定理ブリアンションの定理が同時に真であるということ公理として幾何学が構成されてるってこと?この場合まだ2定理が真なことは図示したとき直観的に明らかだからまだいいけど双対原理に沿うように言葉を入れ替えた命題が全て視覚的にも正しいと判断できるような状況になってる保証はどこにもないよね?それをもそれを「真」と認めるものとして幾何学を構成しちゃってるってこと??)

一方普通の本でも言わずもがなのことは省略されるものです。

国語において読解力があると知られている人は、そういう言わずもがなの部分も何が省略されているか察知する力に長けているはずというか、往々にしてその力の結果が間接的にも直接的にも「読解力が高い」と人に言わしめるときの「読解力」の構成要素になっているはずなのです。

から事典記述についても私が納得できないのはその記述における「言わずもがな」の部分に想像力が及ばないからだとするなら、読解力の高い人ならこういう数学の高度な概念解説も読みこなせるのではないかと思うわけです。

そういうわけで少なくとも数学理論を学ぶという段階だけで見るならむしろ理系ぶって人間よりも読解力が高い人のほうが驚異的な力を発揮するように思えます研究の段階になるとそれがそうじゃなくなるんでしょうかね。

  • 確かに高校時代まで重視される計算力(速さ)という意味の数学力は読解力とかすりもしない概念でしょう。 時間をかければ難しい問題でも解けるが、試験の時間内には無理、というタ...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん