はてなキーワード: デデキントの切断とは
0.999…が1と等しい事がわからん中学生がいる、っていう増田のエントリ[1]があって、
それに対してわっと氏が「等しいのは公理だから」って返答[2]している。
[1] http://anond.hatelabo.jp/20161024040352
[2] http://watto.hatenablog.com/entry/2016/10/25/133000
ちなみに私は[1]の増田とは別人。
わっと氏の主張のどこが間違っているか述べる前に、
じゃぁ、0.999…=1となる本当の理由は何か、というのを先に書いておく。
そもそもなんとなくごまかして「0.999…」と書くことで9が無限に続いている事を表現しているが、
実際には人間の有限の寿命で無限個の数字を書けるわけもない(ヒルベルトの「有限の立場」)。
なんで、実際には有限個数であるn個の9を書いて、そのnをどんどん大きくしているのである。
で、nを大きくするたびに、0.999…が1に近づくというのが、「0.999…=1」の正しい数学的意味である。
高校数学をわかってる人向けに書くと、ようするにnを無限大に飛ばしたときの極限を考えているわけ。
で、わっと氏の何が間違っているのか。
おめー、0.999…=1が実数体の公理だってんなら、有理数体や複素数体の上では「0.999…=1」は
成り立たないってのか!?
当然そんなわけない。
つまり実数体の公理の中でもっとも重要な公理であるデデキントの切断公理が満たされないケース(有理数体)や
順序の公理が満たされないケース(複素数体)でも「0.999…=1」は成り立っているわけで、
「0.999…=1は実数体の公理」という主張はおかしい(注)。
じゃぁ何が重要なのか。
答えは実数体の「距離構造」である(更に弱く「位相構造」でも良い)。
先に極限の話をしたとき、0.999…の桁数nを大きくすると、1に「近づく」って述べた。
「近づく」ってのは「距離が小さくなる」ってことなんで、距離が関係しているわけだ。
わっと氏が触れているε-N0式の極限の定義でも、
0.999…は1に近づくとは限らない。
d(x,y) = 0 if x=y
d(x,y) = 1 if x≠y
0.999…は1に収束しない。
(注)もちろん、実数に関する性質を導くには必ず実数の公理を使うわけだから、
そういう意味では「0.999…=1」の証明に実数の公理を使うことにはなるんだけど、
そんなこと言い出したら「πは超越数」とか「5次方程式は解の公式を持たない」とか
実数に関する全ての定理は実数の公理を使っていることになるでしょ。
★追記
わっと氏の新しい記事を見て、わっと氏が何を勘違いしているのかわかった。
例えば
0.123456789101112131415....
という小数を考えたとき、この小数の桁数を無限に飛ばした極限の
実数(チャンパーノウン定数)が存在する事を示すには切断公理が必要となる。
しかし0.999...の場合は収束先の実数である1が存在することは
新記事の「これはデデキントを遠目で見てます」という記述を見る限り、
わっと氏は無限絡みで実数直線を2つにぶった切るときは常に切断公理が
必要になると思っているようだが、これは正しくない。
上述したようにこのケースはデデキント切断公理は必要ではないので。
デデキント切断公理は「実数直線を2つにぶった切るとどちらかに必ず端点が