2018-10-29

自然数と正の偶数は同じ数だけ存在する」←この話の正しい説明

この話に関する最も愚かで、最も多い人種説明は、全単射だのヒルベルトホテルだのを持ち出して的外れ解説をした挙げ句、「人間感覚裏切られる数の性質ひとつ」などとのたまうアレである本質をまるで理解せず、明らかな矛盾や自らの違和感を深く追求することもせず、権威を前に思考停止して、自分よりは深くものを考えている人たちが納得できずにいるのを見て優越感に浸る真性のゴミカスである

頭の働く人であれば、無限集合の「大きさ」の定義一般的定義とは違っており、表題のような混乱を招かないため新たに「濃度」という語が定義されている、ということを明言するだろう。この話ではそもそも言葉定義知識と違うのだから齟齬が生じるのは当然だ。この再定義を経ずに表題結論に至るとしたら、間違っているのはそちらの方だと言ってもいい。受験レベル数学的帰納法でも偶数自然数より少ないことは証明できるだろう。これが感覚であるなどと、よくもまあ言い張ったものである

参考までに、次のロジックなら誰もが納得できるだろう。『2つの無限集合において集合の全ての要素が1対1で対応するとき、「2つの集合は大きさ(濃度)が同じである」と言う。無限集合A={1,2,3,...,n,...}と無限集合B={2,4,6,...,2n,...}は各要素が1対1で対応するため大きさ(濃度)が同じである』。これは数学的にも直感的にも何ら欠陥の無いロジックだ。

さて、定義を改めればひとまず納得することはできる。だが逆に言えば、一般定義で見た場合に明らかな誤謬が生じているという事実は残っている。集合の要素が1対1で対応するのであれば同じ大きさである、というのは一般的にも間違いなさそうに見えるからだ。真理を冒している論理の誤りがどこにあるのかを明らかにしてこそ、この問題を十分に考え抜いて理解したのだと言えよう。

違和感がどこにあるかは、おそらく誰もが直感的に分かっている所だろう。すなわち、仮に集合Aを100までに限ると、集合Bは200までの偶数となる。一方では100を上限としながら、もう一方では102~200までを考慮してもいいのだろうか。普通自然数偶数と言われてこのような解釈をすることはまずありえない。この矛盾感が、無限集合という言葉を盾にされても看過しがたいものに思えているのではないだろうか。その直感は何も間違っていない。それこそが核心である。何故なら「正の偶数自然数に含まれなけれなければならない」からだ。要素を1対1で対応させようとすれば集合Bは必ず集合Aに無い要素を含む。そのため自然数に含まれるという本来定義を満たすことができない。集合A={1,2,3,...,n,...}を自然数、集合B={2,4,6,...,2n,...}を正の偶数の集合、とすることは各々では正しくとも、偶数定義自然数が関わる以上は両者の定義上の関係性を改めて保証する必要が生じていたのだ。かくして表題のような誤謬が生じたわけである

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん