2019-05-06

論文読んだ

Automatic classification of trees using a UAV onboard camera and deep learning

https://arxiv.org/abs/1804.10390

やったこ

Ecologyの研究には、情報科学世界研究されている画像解析の技術を使えば解決可能ものがある。著者らは、この一つである植物分布の計測を試みている。具体的な解決方法は、UAVデータから撮影した画像データを元に、木々の種類を識別する分類器を作成である。手順として、最初に、UAVから画像と高度データを著者自らが撮影を行った。次にそのデータから学習用の教師データをいくつかの手順を踏んで作成する。この手順は、さらなる研究を行う際にも適用可能である。結果、識別器は良い識別性能をだしている(Model1で83.1%)。前処理として、画像を切り分けて分類器にかけなければならないという点は未解決である

しつもん

Introduction
Methods
  • UAV photography (orthomosaic photo)この2つは別の物のはずなので、同じように書くべきではないのでは?
  • 2.3.3. Each Tree Image Extraction with Ground Truth Label
  • 2.4. Deep Learning
    • 抜き出した木以外の領域は何で塗りつぶしたのか?単色?
    • 塗りつぶした色によって学習結果が変わるはず。
    • なぜ、これだけ良いデータ収集して識別タスクを行ったのか?segmentation のタスクを行うべきだ(SegNetなどの利用をしない理由は?)
    • GoogleLeNetのrandom seed がNoneになっているのは、どういう意味
  • Results
    • 1段落目は、具体的なデータを語らずに良い結果が得られたと言ってますが、なんのデータ
    • さらに、Resultsで突然データを増やしたと書かれているけど、どうやって増やしたのか?なぜ記述がないのか?
    • Ise 2018への引用はついていないが、Referenceには記述してあるのは、なぜですか?
    • model2がどのように作成されたのかがわかりません。
    • 木以外の領域を塗りつぶして、画像データ作成するため、切り分けの仕方(木の伸び形状)によって学習が進んでいる可能性がある。
      • 木の領域を単色で塗りつぶして識別器にかけると、正しく認識されてしまうのでは?
      • 木の領域の長軸と短軸の特徴で分類かのうなのでは?

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん