2021-07-14

いい加減、物理教科書は「∫S F・dS」←この表記をやめろ

大学物理教科書では、ベクトル場を曲線lあるいは曲面Sに沿って積分する際に、「∫l F・dl」とか「∫S F・dS」といった表記が使われる。これは教育的に何のメリットも無いので、本当にやめて欲しい。

何が問題

何が問題かと言えば、多くの教科書でこの表記が使われるにも関わらずその定義が書かれていないことだ。これは喩えるなら、実数a, bに対して「a ☆ b」という操作が行われているが、肝心の二項演算子「☆」の定義が無い、というようなものだ。

定義が書いていないなら、例題などからその計算方法を推測するしかない。しかし、よりにもよってその例題が、「Sが球面で、Fの大きさはSの中心から距離にの依存する」といった積分必要ないものしか載っていないのである

このような教科書では、この計算が出てくる概念を正確に学ぶことはできない。

どうすれば良いのか

そもそも、この計算はこんな意味不明表記を使わずとも書ける。

x, y, zを変数とする直交座標で、F = (Fx, Fy, Fz)とすれば、

  • ∫l F・dFは、∫l Fx dx + Fy dy + Fz dz
  • ∫S F・dSは、∫S Fx dy∧dx + Fy dz∧dx + Fz dz∧dy

である。ただし、lやSを適切な「向き」でパラメータ表示しないと符号が逆になることに注意。この表記は、同時期に数学で学ぶであろう微分積分教科書に必ず書いてある。

微分形式を使うメリット

上記のように微分形式を使うことには、単に曖昧さがなくなるというだけでなく、大きなメリットがある。

ふつう物理を学ぶ学生は、

∫S rot(F)・dS = ∫l F・dl

∫V div(F)dV = ∫S F・dS

みたいなベクトル解析の定理を3つほど覚えている。微分形式を使うと、これらの定理を覚える必要がなくなる。

Dを境界がなめらかであるなどの十分によい性質を持った領域とする(2次元でも3次元でもいい)。∂DをDの境界とする。ωはDの内部および境界定義された微分形式とする。このとき、上の一連の定理はすべて

∫D dω = ∫∂D ω

と表される。dωはωの外微分であり、簡単規則さえ覚えれば誰でも機械的計算できる。

  • 物理の人らは球座標系で成分を書き下したりすると思うんだけどその辺の利便性はどうなの? あと、線積分やら発散やらの(数学者も納得できるレベルの)定義はベクトル解析の教科書...

    • イマドキの理学部性は「ベクトル解析」なんかやらずに、多変数の微分積分(曲面積分は微分形式を使う)→多様体論なので。 教養の物理の教科書だけがいつまでも古臭い書き方をして...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん