三角関数やその加法定理を教える事や測量などへの応用を教える事まではいいとしておいて…
数IIIや数Cまで学習する高校生には三角関数の微分(と積分)まで教えるのが当然という風潮があるがそれでいいのか少し疑問はある
というのも三角関数の微分というのは高校生が学習するには難しい部分が多分に含まれているからだ。加法定理より難しい
まず sinx/x=1 (x→0) さえ証明できれば加法定理を使ってsinxの微分が分かり
その後に他の関数の微分可能性や微積分が求まるのは事実である。しかしsinx/xの極限については証明が中々難しい
S^1を合同変換群の制限と同型になるような群とみなして実数群R^1からS^1への準同型のパラメーター表示として与えられるものやその亜種が
sinx,cosxの幾何的な定義であり高校数学の三角関数もこの類に連なる定義を採用している。この場合はsinx/xの極限は直ちに求まるものではなく
高校数学の範囲で証明しようとするとうっかり循環論法になる事がある。証明が台無しになるのを避けるのが中々難しいのだ。
一方で代数関数の積分として逆三角関数を定義してそこから三角関数を定義する流儀もあり、高木貞治の解析概論ではこの定義を採用している。
この場合は微積分はほぼ自明なものとして導かれるが上記の幾何的な定義との同値性を示さない事には
三角関数の幾何的なお話が全く出来なくなってしまい教育として足りなくなってしまう。
このように三角関数はどのように定義しようが微積分が難しいか幾何的な性質との関係を示すのが難しいかの何れかの困難が立ちはだかる物なのである。
そこを曖昧なままにして大雑把に教えるやり方もあるが、その場合は当の高校生達に「数学が厳密な学問ってギャグなの?」と笑われても仕方ないものになる。
結局どうすればいいのやら…