はてなキーワード: unchanged.とは
貨幣の中立性と超中立性の概念を用いて、貨幣発行の効果を厳密に分析する。
長期的には、貨幣供給量の変化は実質変数に影響を与えないという仮説である。
定義:∀x ∈ X, f(λM, x) = λf(M, x)
ここで、
貨幣供給量の成長率の変化も実質変数に影響を与えないという、より強い仮説である。
定義:∀x ∈ X, g(μ, x) = g(μ', x)
ここで、
max E₀[Σ₍ₜ₌₀∞) βᵗU(cₜ, mₜ/pₜ)]
制約条件:cₜ + mₜ/pₜ + bₜ/pₜ = yₜ + (mₜ₋₁ + Rₜ₋₁bₜ₋₁)/pₜ + τₜ
ここで、
1. フィッシャー方程式:
i = r + π
ここで、i は名目利子率、r は実質利子率、π はインフレ率である。
ln(Mᵈ/P) = α - βi + γy
ここで、Mᵈ は貨幣需要、P は物価水準、y は実質所得である。
Mˢ = Mᵈ
μ = π
これらの方程式系から、貨幣供給量の増加が長期的にはインフレーションに直結し、実質変数に影響を与えないことが導出される。
仮定:
証明:
Let M₀ be the initial money supply and M₁ = λM₀ (λ > 1) be the new money supply after monetary expansion.
Step 1: By monetary neutrality, ∀x ∈ X, f(λM₀, x) = λf(M₀, x)
Step 2: Let P₀ and P₁ be the price levels corresponding to M₀ and M₁ respectively.
Step 3: In equilibrium, M₀/P₀ = M₁/P₁ (real money balances remain constant)
Step 4: Substituting M₁ = λM₀, we get: M₀/P₀ = λM₀/P₁
⇒ P₁ = λP₀
Step 5: For any real variable x, its nominal value at t=1 is P₁x = λP₀x
Conclusion: The monetary expansion leads to a proportional increase in all nominal variables, leaving real variables unchanged. ∎