タイムマシンの数理モデルを作成するのは非常に複雑で、現在の科学技術では実現不可能な課題だ。
以下に、タイムマシンの数理モデルを考える上での要素と概念を示す。
タイムマシンの理論的基礎として、アインシュタインの一般相対性理論が不可欠だ。この理論は、時空の曲がりと重力の関係を説明している。
数式: Gμν = 8πG/c^4 * Tμν
ここで、
タイムトラベルを可能にするためには、閉じた時間的曲線(Closed Timelike Curves)の存在が必要だ。
数式: ds^2 = -c^2dt^2 + dr^2 + r^2dθ^2 + r^2sin^2θdφ^2
この方程式は、時空の幾何学を表現しており、CTCが存在する条件を示している。
タイムマシンの実現方法の一つとして、ワームホールの利用が提案されている。
数式: ds^2 = -e^2Φ(r)dt^2 + (1-b(r)/r)^(-1)dr^2 + r^2(dθ^2 + sin^2θdφ^2)
ここで、Φ(r)とb(r)は、ワームホールの形状を決定する関数だ。
2. 因果律の保存