「トランスミッション」を含む日記 RSS

はてなキーワード: トランスミッションとは

2024-06-04

anond:20240602193210

plane wave tube(PWT)について補足

PWTに用いられる吸音材はポリウレタングラスファイバー、スチールウールなど普通の吸音材だが、その形状に特徴がある

以下のpdfを見ればわかるように、徐々にテーパーの掛かったツノ型の吸音材(Eckel wedge)が用いられることが多い(無響室の壁に貼ってあるものと同型)

https://etran.rs/common/pages/proceedings/IcETRAN2017/AKI/IcETRAN2017_paper_AKI2_6.pdf

あるいは、パイプ状の吸音材の中心をテーパー状にくり抜いて、逆ツノ形とすることもある

いずれにせよ徐々に断面積を変化させることでパイプ終端部での急激な音響インピーダンス変化による反射および気柱共鳴の発生を防ぐ目的があるのだろう

以下、参考資料

https://pubs.aip.org/asa/poma/article/26/1/045003/836690/Sound-transmission-measurements-through-porous

An anechoic wedge is considered to be anechoic if it can absorb 99% of the incident energy (absorption coefficient of 0.99 or a pressure reflection coefficient of 0.1). 3 The length of the anechoic wedge is the primary factor that determines the low frequency limitations of an anechoic wedge but the taper angle also matters. A commonly used criterion is that the low frequency anechoic limit of a wedge occurs when the wedge length is approximately 1/3 the length of a wavelength. Further design considerations are given in Reference 3.

ツノ形吸音材は波長の三分の一以上の長さでなければならない

ttps://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1123&context=spacegrant

The end of the receiving side tube was fitted with a 1.35 m anechoic termination designed to be anechoic to 60 Hz [22]. the absorption coefficient is greater than 0.90 all the way to 50 Hz.

→1.35mのツノ形吸音材をパイプ内に配置したところ、50Hzまで0.90の吸音係数となった(注: An absorption coefficient of 1 means that all acoustic energy striking the surface will be absorbed and none reflected)

ttps://physics.byu.edu/docs/publication/790

a 1.5 m anechoic termination was located at the far end of the receiving tube. The source consisted of a 10 cm full-range moving coil driver with a sealed rear enclosure. The anechoic termination consisted of a tapered wedge cut from a solid cylinder of open-cell foam rubber and situated inside another section of 10 cm diameter acrylic tube. An air gap behind the wedge was filled with loose fiberglass insulation and the tube was capped with a thick steel plate.

→1.5m長、10cm口径アクリルチューブ内にツノ形吸音材を配置。その後ろにはファイバーグラス。67 Hzまで吸音係数0.99(ほぼすべて吸音)、40Hz以下でも0.70以上。

ttps://www.diva-portal.org/smash/get/diva2:893785/FULLTEXT01.pdf

ttps://www.redalyc.org/journal/849/84959055006/html/

ttps://www.researchgate.net/publication/249996349_Numerical_methodologies_for_optimizing_and_predicting_the_low_frequency_behavior_of_anechoic_chambers

ttps://media.neliti.com/media/publications/355792-computational-investigation-of-various-w-284f86a7.pdf

Building a Plane Wave Tube Experimental and Theoretical Aspects(要購入)

On the acoustic wedge design and simulation of anechoic chamber(要購入)

Plane wave analysis of acoustic wedges using the boundary-condition-transfer algorithm(要購入)

ttps://scholarworks.wmich.edu/cgi/viewcontent.cgi?article=1047&context=masters_theses

ttps://www.researchgate.net/file.PostFileLoader.html?id=55113a60d2fd647b6e8b45c9&assetKey=AS%3A273742293340165%401442276656878

ツノ形吸音材の長さや後ろのエアギャップの長さを変えて吸音率をシミュレーションしている

ttps://pearl-hifi.com/03_Prod_Serv/PR2/Refs/105_Anechoic_Chamber_Design_and_Construction.pdf

→長さや素材を変えて比較

ttps://www.researchgate.net/figure/Impulse-absorption-and-reflection-by-acoustic-foam-wedges-left-and-block-right_fig3_267080775

ツノ形吸音材と長方形吸音材にインパルスを当てたとき比較後者は反射波が出ているが前者はスムーズ

ttps://www.researchgate.net/publication/331351282_How_Do_Acoustic_Materials_Work

→各種吸音方式の吸音率の比較ツノ形が一番効率高い)

https://www.diva-portal.org/smash/get/diva2:893785/FULLTEXT01.pdf

→形状はピラミッド型・ハーバード型が最良

→奥行きが長いほうが吸音効率高い(低域カットオフ周波数: fc=c/4h hはツノの高さ(奥行き))

→土台の長さ、背面エアギャップ、横の長さはあまり関係ない

→流れ抵抗は低いほうが低域まで吸音できる

ttps://pearl-hifi.com/03_Prod_Serv/PR2/Refs/105_Anechoic_Chamber_Design_and_Construction.pdf

→エアギャップが長いと超低域の吸音効率上昇、しか100Hzあたりで効率低下

→吸音材底部を壁に貼り付けると効率低下(スティフネスが高いとだめ)

棒を突き刺して天井から吊り下げるのもよくないとのこと。しかし棒を突き刺すだけで棒を固定しなければむしろ音効率上昇する

これはスティフネスよりも棒の質量が影響しているとのこと

棒を長くすると逆に効率低下(ただし微妙な差なので誤差かも)

ツノの角度は13~17°くらいが一番いい(それより小さくても大きくても効率減少)

→土台は長い方が良い(10~15cmあたりが一番良い?)

ツノパラボリック型にしても変わらなかったとのこと

→硬い面に設置するのとレゾネーター上に設置するのでは前者のほうがいい

→グラスウール90kg/m^2と150kg/m^2では後者のほうが良い

→通常ツノ型吸音材はウール系よりも硬いメラミンポリウレタングラファイトなどで作られる。ファイバーウールのほうが音響特性は良いが強度がないことと人体への危険などがあるため。

ツノ型吸音材はツノツノの間に入った音波が反射を繰り返して減衰することから実質的に3~4倍の面積があることになる

ツノの先を低密度の素材にして波が入射しやすくし、土台を高密度の素材にして吸音率を高めるなどの工夫もある

ttps://diyaudioprojects.com/Technical/Papers/Loudspeakers-on-Damped-Pipes.pdf

パイプダンピングや形状の検討

→逆ホーンにするとパイプ共鳴周波数が1/3オクターブ上下がる

→小型スピーカー場合200Hz以下は点音源となり無指向性となるがダンプされたパイプの低音はa unidirectional gradient sourceとなり指向性を持つ

ttps://diyaudioprojects.com/Technical/Papers/Alpha-Transmission-Lines.pdf

トランスミッション方式研究

また面白いことに、逆ツノ形状は「音響ブラックホール」とも呼ばれ、ブラックホール音響的に再現しようとする試みでも用いられている

詳しいことはよくわからないが、光がブラックホールに入ると脱出不可能になるように、音波が脱出不可能になるような仕組みを音響的に作ろうという試みらしい

中にはノーチラスのような角巻形のいわゆる逆ホーン形状も検討されていて、興味深い

参考:

https://www.sciencedirect.com/science/article/pii/S0307904X19305700

https://www.researchgate.net/publication/354522527_Acoustic_Black_Hole

https://www.researchgate.net/publication/257829935_One-dimensional_acoustic_waves_in_retarding_structures_with_propagation_velocity_tending_to_zero/download?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InNpZ251cCIsInBhZ2UiOiJfZGlyZWN0In19

このあたりのフレーズで調べると色々出てくる(日本語ではほとんど情報がない):

plane wave tube

impedance tube

acoustic black hole

anechoic termination tube

anechoic wedge

おKEFが「音のブラックホール」なる迷路状の吸音構造を近年開発した。これは様々な長さ(=様々な共鳴周波数)を持つ閉口端のチューブを組み合わせ、振動からの音波を共鳴によって打ち消す仕組みとなっており、古典的共鳴器型吸音構造と言える

参考:

KEF、“音のブラックホール”開発。「まもなく」製品

https://av.watch.impress.co.jp/docs/news/1274260.html

https://international.kef.com/pages/metamaterial

https://www.theabsolutesound.com/articles/metamaterial-absorption-technology/

2024-03-04

anond:20240304115419

80年代の半ば頃、海外のヒットし始めたばかりの話題曲をいちはやくオンエアする「FMトランスミッションバリケード」という深夜番組があり、そこで複数回デザートアイランド・ダスクス』というタイトル?の曲がかかってたのを想い出した

番組最後にチョイスしたDJ自身による曲目紹介があるのだが、そこでも『ダスクス』と言ってたし曲中でもそう発音しているように聴こえてたけど、なんだったんだろうな

2023-07-22

決して自動車が念力で動けるようになっててはならない

エンジントランスミッションブレーキなどを製造する町工場が壊滅

米露サウジ産油国の優位が崩れる

石炭産業を見捨てた政府は将来しか見ない

2023-07-01

anond:20230701222209

2022年ロシアウクライナ侵攻にも多数のKa-52が投入されているが、ウクライナ側は複数のKa-52撃墜とみられる動画画像を公開しており、イギリス国防省ロシア側の損失が配備機数の25%に上ると推定している。ウクライナ側はKa-52を自動小銃撃墜したとも主張したことがあり、Ka-52には機体前方から7.62mmクラス小銃弾でコクピットトランスミッションの致命部を貫通しうる構造上の脆弱部が存在するとしている。

2022-10-20

anond:20221019180132

理由ね。コスト削減かな?

もうちょっと詳しく書くとですね。

電車自動車のようにトランスミッションは搭載してないのですね。

基本的には直流モーターに流す電流抵抗電気抵抗を回路に入れている)と回路の直列並列の繋ぎ変えで制御して出力=スピード制御している。

で、電車って実はモーターがある車両とない車両があって、だいたいある車両2:ない車両1とか、最近では1:1とかもっと少ない時もある。

当然、モーターがある車両の方が高価です。

んで、東武の旧型の電車(8000形という)は、1:1を狙った。そうすると、モーターがある車両比率が少ない分、モーターがある車両の出力を高めないといけないが、少ない駆動軸で出力を上げると空転しやすくなる。

そこで空転を防ぎ、出力を滑らかに制御するために、他ではあまり使っていない制御回路(バーニア制御回路)を追加しているのね。

トランスミッションじゃないけど、車の副変速機のように、出力をもっと細かく制御できる回路を用意したと。

んで、電気ブレーキって、要は加速時の回路を逆にしているのだけど、加速時の回路を細かくしているので、それに対応する電気ブレーキを装備しようとなると、それもコストが上がる。

止めるだけなら従来のブレーキでも止まるから、当時の東武は8000系に電気ブレーキを付けなかったのです。

当時、東武鉄道は高度成長期乗客が増え続けており、輸送力の増強が至上命題でした、安いコスト車両を増備したかったので、いろいろ優先順位を考えて、電気ブレーキを付けなかったのです。

2022-06-22

anond:20220622085433

100km〜120km出すと80kmの時より電費が悪くなるのは、ICEHVだって同じだよ。100kmで▲20%、120kmで▲55%なんて車種もある。

https://img.bestcarweb.jp/wp-content/uploads/2020/11/26153108/20201126_120kmTest_01_hyo1.jpg

急速充電できるロケーションが少ないかケチケチこわごわ走ってる人達もいるけど、トランスミッションレスEVの高速域の電費低下自体は、エンジン車と同じ程度。

「重いから足回りやシャシボディを3倍くらいは強化しないとまずいし、モータは高速苦手だから結局ギアはいるし」と言ってたのに、重量については客観的数字を出されたらだんまりなの? そりゃ足回りやシャシボディを3倍にしたら、さぞや重くなるだろうけど、まずは増田がそのEVを屏風から出してみてくれよ。

anond:20220622083528

EV信者、二言目にはEVトランスミッション無しで高速出せるとか言うけど、

常に電費計算しながら残航続距離と最寄りの高速充電器までの距離比べながら高速を時速80kmでトロトロ巡航して、

トラックや極端に遅い軽の後ろを耐え忍びながら移動してくとか、ガソリンスタンド寄る手間よりも遙かに面倒なことやれるの凄いよな。

しかも、それを1回の移動で2回も3回もやるんだろ。マゾ

anond:20220622083528

またEV信者さん嘘ばっかり。

誰が書いてるのか文体で分かりそうだよなw。

速度出せるけど、実際にその速度実用的に出せるかというと違うじゃん。

結局どのEV信者の試乗レポ見ても、加速はやみつきになるけど100km以上出すと電費急速に悪くなるから

常に電費計算して残航続距離計算しながら新東名とかの120km区間でも80km巡航で高速耐え忍んでるような移動ばっかりじゃん。

実際、そこら辺を問題視してるからこそ、ポルシェやら欧州メーカトランスミッション載せようとしてるんだろ。

欧州車にとって、長距離・高速移動できないと高級車乗るような層は満足してくれないわけだし。

テスラ日産リーフなんて、高速での電費を捨てた廉価版じゃん。

200km巡航なんて考えなくても、120km巡航に耐えられない時点で欧州・高級車以外でもすぐに不満溜まって変わるよ。

anond:20220620193239

おじさん、それ、いつの情報…?

知らないから教えてあげるけど、それが成り立つの超小型車モビリティクラスの低速EVだけだからな。

分かってて、嘯いてるのかもしれないけど。

速度だそうと思うと、重いから足回りやシャシボディを3倍くらいは強化しないとまずいし、モータは高速苦手だから結局ギアはいるし、重い故にトラックバスみたいな作りなるからコスト

質量あるEV無駄多過ぎなんだよ。



テスラモデル3の重量は1760 ~ 1850 kg。初期モデルには2速トランスミッションがあったけど今はない。それで普通に250km/hオーバーで走れる。重量が動力性能のハンデになってない。ほぼ同車格のトヨタ・カムリの重量は1550 ~ 1680 kgで、差は200kgBOMで見た原価は、元増田で書いたように、両者ほぼ肩を並べるところまで来ている。

日産リーフの重量は1520 ~ 1680 kg。速度は最新モデル最高速度が160km/h。もちろんトランスミッションはない。ひとまわり小さい日産ノートの重量は1190 ~ 1340 kgこちらも「足回りやシャシボディを3倍くらいは強化しないとまずい」なんて話にはなってない。

EVトランスミッション組み込むのは、200km/h以上での巡航を想定してる、ポルシェみたいなごく一部のパフォーマンスカーだけだよ。日本公道でそのスペックを使う機会はない。で、そういう車種になると総重量もICEとさほど差がなくなる。カイエンタイカン比べてみ。

2022-03-14

anond:20220314172159

いろいろ調べてくれてありがてぇ

だが、

常識ATとは「変速比を自動的に切り替える機能であるから

には無理がないか

法律ありがちな「等」とか「その他」とか濁す言葉を使わずトランスミッションではないものトランスミッションというのはあんまりだ。



「我々の常識ではビーフカレーとは肉が入っているもの全般を指すので、豚肉でもビーフカレーだ」

と言われているような気分なんだ。

2022-02-25

EVだとなんでトランスミッションがいらないの?

誰か小学生にもわかるように説明して

2022-02-11

anond:20220211025308

十年くらいまえだっけ?ラジオトヨタ整備士?のCMで、妙齢女性が『今日トランスミッションの交換はバッチリ!はー、ヤリガイあったな~♪』てシャワー浴びてるシーン、あれなんやったんかね?

2022-01-31

anond:20220130193647

自宅充電という視点が抜けてる。自宅充電(普通充電)は家にあるコンセントからの充電で、急速充電じゃないか時間はかかる。家に車を停めてる間にゆっくり充電して翌朝には満タンになる、という電気自動車で一番使われる運用方法になる。

この記事によると、電気代は1kwhあたり30円、60kwのリーフe+なら1800円でフル充電できる。

https://selectra.jp/energy/guides/ryokin/1kwh

ガソリン車の燃費はリッター20kmだとすると、20km走るのに170円、1km8.5円かかる。リーフの電費はへいきんすると1kwhあたり7km、1kmあたり4円ちょっとガソリン車の半額で運用できるようになる。

さらEVだとエンジントランスミッションも無いから、オイル交換も必要ないし各種メンテナンスコストも低くなる。

EVの方が圧倒的に安く運用できる。これが否定しようのない事実なんだよ。だから欧州中国ものすごい勢いで電動化してるし、物流企業配送車もEVに置き換わっている。

2021-10-12

anond:20211012001758

走ってる間にボディが消え去りそう

あとエンジンとかトランスミッションの熱で発火しそう

2021-09-10

anond:20210909152336

モーターの巻線切替してトルク・高速域を両立させる仕組みとかあるけど、基本はモーターもトランスミッション積んで多段化してく流れ。

EVなれば部品が減るってのは夢物語で、何だかんだで今の車と同等の航続距離・速度性能だそうとしたら、どんどん部品増えてく。

2021-09-09

EVトランスミッションって本当にいらないの?

高速走行時の燃費めっちゃ悪くなりそう。

下道走ってたら走行可能距離100kmって書いてあったのに、

高速に乗った途端残り50kmとかになりそう。

実際テスト走行した人も高速で30%も電費が悪化した!とか言ってたし。

でもトランスミッションの重さやスペースの代わりに電池積んだ方が良いのかなぁ。

トータルで見たらトランスミッション無しの方が良いんだろうけど、トランスミッションがあった方が低速高速間の電費の差が縮まって使い勝手は良くなる気がする。

2021-02-07

バカ無知はてなーに教えてあげるよ

おバカはてなーのために分かりやす日本自動車産業について懇切丁寧に教えてやるから耳かっぽじってよく聞け。


まずお前らはテスラばかり持ち上げるが電動化で優れているのは日系メーカーだぞ。

ハイブリッド車を作ってきてトヨタ日産ホンダどのメーカーインバータバッテリー関連の技術を持っている。

電動化車両に関しては日産は今後は2030年代に全車両の電動化をすると宣言しているし、トヨタマツダスバルスズキダイハツを巻き込んで全固体電池を載せた車を2020年代後半に出してくるだろうね。

ここで問題になってくるのはテスラなんかよりも中国メーカーだ。

"宏光MINI"という中国で60万前後で売られている軽自動車くらいの大きさの電気自動車だ。

航続距離は100km前後最高速度も100km/hくらいのやつだ。

なぜ安く作られているかといえば、はい正解、大量生産をしているからだ。

まずなぜ安いかといえば基本的構造部分はGM技術が流用されているはずだ。

ただ、長期的な視点でみらたら安い中国車は品質問題が出てくるが、これも大量生産時間の積み重ねによるノウハウ蓄積で解決するだろう。

バッテリーリチウムフェライトバッテリーという安いけど少し性能の悪いものを使っているのもデカイ。

じゃあ、高い中国車はどうなんだという意見も出てくるからそれについても触れよう。

NIOという中国テスラと呼ばれるメーカーがあるが、そこが2022年中に全固体電池を搭載したセダンを出すという話がある。

このメーカーVW系列技術がふんだんに入っていて、技術者もVWから移ってきた人が多いから、ボルボ技術を吸い上げた吉利汽車の出す中国車と並んで日欧米自動車メーカーにとっては脅威になるだろう。

話を戻すが、この車のバッテリーセル台湾の輝能科技(PLG)製という話だ。

まり全固体電池技術自体はNIOが持っているわけじゃない。

まり中国車の本質的な脅威はその技術じゃなく、大量生産によるコストダウンなわけだ。そして、トヨタ日産ホンダはどの会社中国について動向を探っているさ。

じゃあ、これにどう対応するかというと単純だ。

こっちも大量調達生産部品の値段から下げていけばいい。

からトヨタスバルマツダと手を組んだし、日産ルノー三菱メルセデスと組んでいる。ホンダGMだ。海外に目を向ければFCAPSAがくっついた。

目には目を歯には歯をの世界なわけだ。

90年代自動車産業は400万台クラブという言葉流行った。

まり、年間400万台作れない会社は淘汰されるという意味だ。

今は1000万台クラブ基準と言われている。

じゃあ、この基準に入っているメーカーはどこか。

結論から言えばVWトヨタルノー日産三菱アライアンスの3つだ。

マツダスバルトヨタの傘に入っているか問題ない。

問題なのは年間600万台に届かないホンダなわけだ。

ホンダ伝統的に自社でやっていくことを好んでいたが、電動化車両に関しては年間700万台売っているGMと手を組んだ。

こうすれば1000万台に届くわけだ。

大量調達生産回避できた、じゃあ問題はなにか。

業界ゲームチェンジを試みる中国政府EUのような存在だよ。

分かりやすい例を出そう。

トヨタプリウスPHVを出した、初代は26kmくらいEV走行ができて、現行のは50-60kmほどだ。

これをPHVとして認めてしまうと、自国メーカーがかなり不利になるということで、中国ヨーロッパゴールポストを動かしてPHV定義を大きく変えた。

大きく変えることでPHVに大量のバッテリーを積ませて、エンジンを載せることをデメリットにするためだ。

PHVCO2排出量は日常用途だとEVとほぼ変わらない事はわかっている。環境規制なんてもの所詮タテマエで、本音自国産業の待遇しかないんだぜ。

https://news.yahoo.co.jp/articles/9b95abc26671a7a2dc0fe186546ad0201d704b54?page=4

こういったプレーをしてくるのが政府こそが日系メーカーの真の脅威なわけだ。


じゃあ今度は自動運転だ。

ここで問題自動運転の基礎技術となる自動ブレーキシステムだけれどどこが優れた技術を持っているでしょうか?

はい、答えは日経メーカだ。

VWあたりの自動ブレーキテスト動画を見てみろ、猛突進して突っ込むからな。

じゃあテスラはどうなんだというお馬鹿さん、テスラ自動運転レベル2と言われる、"システムアクセルブレーキ操作またはハンドル操作の両方を部分的に行う"機能なわけだ。

これ、自動運転とは言えないレベルで、過大広告として各国で訴訟公取委調査が入っているんだぜ。

じゃあ日系メーカーはどうか。

ホンダレジェンド自動運転レベル3を出した、大まかにまとめると高速道路渋滞時にステアリングアクセルブレーキ操作をせずとも勝手に全部やってくれるわけだ。

テスラのは所詮車両方向の微調整と簡単アクセルブレーキ操作だけだから段違いなんだよ。

他の2社はどうかって?

トヨタToyota Safety Sense日産プロパイロットテスラと同じレベル2なんだよ。

そしてもちろん開発をやめるわけがいから今後数年でレベル3の車を出してくるよ。

じゃあレベル4はどうかというとそもそも運転責任のあり方が大きく変わるから国交省保険屋との制度のあり方を相談中なわけだ。

ちなみに保険屋もただ手をこまねいているだけじゃなくてちゃん活動をしている。

例えばニッセイは群馬大学自動運転研究チームと一緒になって保険のあり方を社会学方面も含めて研究をしている。

つぎ、シェアリングだ。

Uberの登場で自動車コモディティ化すると言われたが、現状どうだろうか。

Uber欧州カリフォルニア規制されてるから今後は発展が不可能だろうね。

シェアリングといいつつ実態はただの無責任白タク親玉しかないんだからそりゃそうだ。

じゃあ別の形態はどうだろうか。

ホンダは自社でマンスリーオーナーを、トヨタはKintoを、日産はe-シェアモビを展開している。

日産は詳細を発表していないが、ホンダ好調トヨタは今後黒字化の目処がたっている状態だ。

これのノウハウを積んで、海外展開も行うことができたら発展の余地はあるだろうね。

じゃあ次コネテッドだ。

コネテッドと言っても様々な形があるが、テスラのようにOTAアップデートのようなものからVICSのようなものもある。

後者日本メーカー国交省と共同でやってきているし、他にも災害時に通行可能道路を表示できる通れた道マップも各社関わってきている。

OTAアップデートのような仕組みは日系メーカーはまだ実装していないが、既存携帯通信網を利用した仕組みとして日産SOSコールトヨタLexus Total Careがある。

OTAアップデートに関してはよりセキュリティが堅固になれば各社実装してくるのは間違い無いだろうね。

あと、マツダなんかはエンジントランスミッション制御システムアップデートを実際に行って、エンジン型式再度取り直しして出力特性を変えてきた。

海外メーカー国交省がここらへんに関して非常に甘く、日系メーカーには厳しかったが、大きく流れは変わってきたって事だ。

もうちょい突っ込んで最近流行りの技術について書いていく。

日系メーカー機械学習やその他のIT技術に疎いと思ってるならお前は馬鹿だ。

機械学習自動運転関連で使われているのはもちろんの事、自動車の空力設計事故時の衝突安全性設計エンジンの噴射周りなんかに活用されている。

自動車産業ってのは車を1車種作るのにかなりの回数解析回して、基礎が完成したあとも何台もぶっ壊して安全性確認してデータをとっている世界だぜ。

機械学習に食わせるデータなんてものは腐るほど持っている連中なんだよ。

それを活かさないわけがないだろ。

最後

https://b.hatena.ne.jp/entry/s/anond.hatelabo.jp/20210205123417

https://b.hatena.ne.jp/entry/s/www.nikkei.com/article/DGXZQODZ045P20U1A200C2000000/

コメにツッコんでいくぜ。

経営状態よろしくないんでプライドで蹴りそうにないのとEV技術があるってことで日本の中では日産かな

日産アライアンス以外で下請けになって車を作ることの意味を知らないとでも思っているのか?JDIやその他企業搾取のされ方を日産が見ていないわけがないだろ。

アップルが既にやってる事を見ると、ゴリゴリ搾取されそう。かと言って、イノベーションを起こせない限りは話に乗らないと潰されそう
品質から日本は優れている、なんて15年前のIT家電業界で散々言われてきたことだよ。自動車から特殊ではないのよ。例え慢心してなくても破壊イノベーション抗うのは困難なのよ。

お前らイノベーションって言葉好きだけど、iPhone以外に具体例を挙げて説明することって絶対にしないよな。所詮お前らのイノベーションへの認識ってその程度でしかないのに、それで他業種を笑うのは他業種をバカにしすぎだろ。まず語るならきちんと現状を知れよ。

でもこのままじゃ負けるよな

どう負けるか、根拠も含めて提示しろよ。

日本自動車メーカー航空機みたいにTier1として生きていくしかないでしょ もはやソフトウェア含めたパッケージング能力は無いよ
ソフトがまともに開発出来ないので今後他の分野も全部こうなると思った方がいい。

日本メーカーソフトウェアがだめだって?w 自動運転世界トップを走っていて、各種制御ソフトも持っている日系メーカーが?

よりユーザーが触れる部分に(例えばナビ)関しても欧米メーカーより作りは上手いし、テスラのようにeMMC使って数年後に文鎮化するようなことはないが?

自動車メーカー現在進行形サプライヤーからがっつり搾取しているので、正直痛い目見てくれという気持ちが強い。

ガッツリ搾取はするがアップルのように搾取してポイ捨てじゃないんだよ。日系メーカーサプライチェーンまで含めてCASE対応に取り組んでいる。興味のない外部からは分からないだろうけれどね。

トヨタが一番恐れているのは自動車CASEによりコモディティ化して、個人で所有する意味がなくなる事でしょ。自家用車稼働率は5%未満、つまりシェアサービスが進めば車は今の1/20しか売れなくなるのよ

ITに強いと自負していると勝手推定した上でいうけれど、自負しているののUberの現状を知らないん???

ITエンジニア絶対ITエンジニアと名乗らない件も含めて、お前ら他人へのリスペクトが足りなさすぎるんだよ。

メルカリのような転売屋を集めるクソこしらえるとこ褒め称えたり、中抜き多重下請け構造しかモノ作れない奴らになにか言われる筋合いはねよバーカ。

2020-12-05

最近電気自動車推進の議論の雑さについて思う事とか

最近世界の流れで、2030年代に内燃機関を積んだ自動車新規販売禁止しようという動きが盛り上がっている。

ただなんというか、どうもコロナ後の経済対策をかねて強引に需要創出したいからだろうか、電気自動車=エコ=ガソリン車をなくすのが社会正義的な短絡的な思考回路が気になっている。

またマスコミ等の、1日でも早く電気自動車に舵を切らないと電動化による部品点数削減のあおりを受けて、PCスマートフォンで電機業界がやらかしたように日本自動車産業は壊滅するといったパニック的な論調にも違和感を覚えるので思うところを書きたい。

ちなみに筆者は非自動車業界エンジニア、ただし工学部出身なので自動車業界の友人は多く、友人経由で業界の話はよく聞いている。

新し物好きなので2010年代日本市販された電気自動車である三菱i-MiEV日産LeafトヨタのMIRAIは乗ったことがある。

残念ながら、テスラレンタカー代が高すぎるのでいまだに乗ったことがない。

言いたいこと

電気自動車が必ずしも内燃機関を積んだ自動車よりもエコであるとは限らない。

内燃機関を積んだ自動車電気自動車に置き換わることが即部品点数減になるとは限らない。

パソコン自作のように簡単自動車が作れるようになって新興国メーカーにすぐに置き換わられることはない。(スマートフォンHuaweiのように、研究開発能力の高い企業が台頭してくれば話は別)

電気自動車エネルギー効率について

Well to Wheelって言葉がある。ざっくりいうと、化石燃料油田から掘り出して、自動車タイヤを動かすまでのエネルギー効率がどれくらいになるかという話である

例として、最新のガソリンエンジン車と現在日本で最大の電力源である火力発電所の電力で電気自動車駆動させた時を比較してみる。

議論単純化のために、ガソリンや、発電用の重油LNGを精製するまでの効率は一旦無視する。

現在市販車の中で熱効率が最も良いガソリンエンジンリーンバーンエンジンだが、一番効率の良くなる回転域で熱効率40%程度である

それに対して、2020年時点で最も効率の良い火力発電所リチウムイオン電池効率は下記のようになる。

コンバインドサイクル発電 熱効率:60%

送電ロス:3%

リチウムイオン電池の充電効率:90%

リチウムイオン電池放電効率:90%

0.6*0.97*0.9*0.9 = 47%

最新の効率の良いもの同士を比較しても何倍もの差はつかない。

日本にある火力発電所のなかで、熱効率60%を達成しているものはまだ少数であること、リチウムイオン電池特性経年劣化することを考える。

発電効率50%、充放電効率が80%に低下してしまえば、エネルギー効率は0.5*0.97*0.8*0.8=31%まで悪化し、内燃機関効率の上で勝てなくなる。

現状の発電所の電源構成をとる限り、電気自動車エネルギー効率上のアドバンテージはない。

火力に代わる安定的ベース電力といえば、現状原子力比率を上げるしか選択肢がないわけだが、果たして社会的なコンセンサスが取れるのだろうか?

余談だが、電気自動車にはエンジンの排熱が存在しないので冬場の暖房効率が悪く、ものすごく早く充電量が低下する。

(レンタカー電気自動車を借りたときに、上記現象経験して効率の悪さに驚いた。)

逆に、下り坂などでのモーターの回転を利用して充電できる回生充電という内燃機関にない特徴があるので、この辺りは一長一短か。

部品点数について

自動車動力内燃機関からモーターに代わると、エンジントランスミッションブレーキの油圧機構等が不要になり、

現在5万点といわれる自動車部品点数が1万点程度に減るのではないかといわれている。

だが、本当に今後の自動車部品点数は減っていくのだろうか?

自動運転を実現するための画像処理用の半導体

代表的GPUメーカーNVIDIAの最新GPUであるGeforce RTX3090のTDP(熱設計電力)は350W。

10年位前まではハイエンドモデルGPUでもせいぜい200W以下であったことを考えると、世代が進むごとに熱問題が深刻になってきていることがわかる。

実用的な自動運転が実現可能レベルまで性能を上げていけば、冷却用の機構部品新規必要になるのではないか?

例を挙げるならば、プレイステーションが新しい世代になるごとに冷却機構が大げさになっていくように。

一昔前にはバックモニター程度にしか使われていなかった車載カメラ最近では自動ブレーキドライブレコーダーの普及によって1台の車に複数まれるようになってきている。

これに加えてドアミラーミラーレス化されたり、自動運転進歩するとさらカメラセンサーの台数は増える。

ちょっとしたドライブレコーダーでさえ、1つ1つのチップ抵抗チップコンデンサ部品1つとカウントしていけば、トータルの部品点数は100を超えるだろう。

こうした車載電子機器の増加は、同時に電力や信号を伝達するためのワイヤーハーネスの増加も引き起こす。

少し考えただけでも上記2点のように部品点数が増加する要素が考え付くのだが、本当に自動車の電動化がすすめば劇的に部品点数は減るのだろうか?

車体に求められる要求水準が上がっているため自動車の開発費や工数は増加傾向。電動化でもここは減らない。

動力源が内燃機関だろうが、モーターだろうが自動車自動車である限り車体の構造は大きく変わらない。

燃費向上のためには車体を軽く仕上げないといけないが、十分な剛性を確保するためには強くしないといけないので、相反する要求を満たすため、車体に使用される鉄素材に占める高張力鋼比率は年々上がっている。

一般的に、高張力鋼は加工性が悪いので、より高性能な工作機械新規に導入したり、プレス溶接手法研究していかなければならない。

また、自動車安全性能に対する各国の基準は年々厳しくなっているため、横滑り防止安全装置等の機構新規に搭載する必要が出てきたり、様々な角度からの衝突試験に耐えうるボディ形状を設計開発しなければいけなくなったりで開発や試験工数が増加しているため、世界大手トヨタでさえ車体開発コスト削減のために車種数を統廃合しているご時世である

この現状に対して、パソコン自作のようにモーターを買ってきて車体に乗せれば誰でも電気自動車メーカーをつくれる状況が来るのだろうか?

自動車開発のノウハウ資金力も不足している新興国新興企業が、日米欧の主要メーカーに対抗できるだけの設備投資研究開発が実現できるのだろうか?

可能性はゼロではないだろうが、通信業界におけるHuaweiのように、国家資金研究開発リソースをぶち込んだほんの一握りの企業しか台頭できないのではないだろうか?

2020-08-12

anond:20200812161009

あるいみプログラマー

お前は気が付かないだろうけど

ここをちょっとこうするだけで性能が10倍になるんだぜというやつ

 

おれからすると

おまえがちょっとなにかするだけでも性能が10倍になるソフトを作るのがどれだけ難しいと思ってるんだ?というのと

トランスミッションぐらいわかれそれは2速だ。7速マニュアルだとなぜおもわん

MTミッションというやつ

ATオートマティック・トランスミッション

MTマニュアルトランスミッション

な訳だが。

なぜか、

ATオートマ

MT=ミッション

と略す謎の層がいる。

テレビミッションと言っている人がいてこっちが恥ずかしくなった。

ログイン ユーザー登録
ようこそ ゲスト さん