はてなキーワード: ナイキストとは
こういう話になると俺も勉強してない話になるので変なことを言ってるかもしれないけど、なんていうか、俺の感覚では数学は「対象」を「そいつらに対して許容される操作の集合」で規定するところがあるように思うんだよな。「操作」というのは例えば「足せる」とか「スカラー倍できる」とか「足してゼロになるやつが存在する」とかそういうの。そんでもってその「操作」が全く同じように成り立つ別の「対象」があるということがしばしばあって、「そいつらに対して許容される操作の集合」こそが「対象」という意味ではその2つの「対象」は全く同じということがある。それを準同型と言ったりする。そういう複数の「対象」を同じものとみなして都合に合わせて自由に行き来することを「同一視する」と言ったりする。
サンプリングというのは「連続関数」の対象から「離散的な値のセット」の対象への変換なわけだけど、こういうことをすると連続関数の世界で成り立っていた「操作」が成り立たなくなってしまうことがよくある。対称性が失われたり、ナイキスト定理によって高周波成分が失われたり色々する。それはつまり「対象」として別物になってしまうということだと思う。じゃあ連続関数の中でもどういうものなら「操作」が保存されるのかとか、「復元」が可能な場合はあるかとか、そういう話になってくる。
さらには、異なる「操作」自体をある意味で同一視して同じものとみなせるかどうかを議論するような分野もある。圏論と言う。異なる「操作」としての「圏」の間の準同型のような移り変わりを「射」と言って自由に移り変わりながらそれらに共通する性質の抽象化を試みたりする。でも圏論は全然勉強したことないからよく分からん。すまん。でも圏論で出てくる「可換図式」という図式の書き方とか使われ方を調べてみるともしかすると何か参考になるかもしれないと思う。