2024-09-15

CFTM理論

(2,0)共形場理論CFT)とM理論のホログラフィック対応活用し、M理論の量子補正を再構築する。

具体的には、大N展開に基づき、6次元CFTのOPEデータを用いて、11次元重力の4点関数のR⁴やD⁶R⁴の項を導出することにある。

WNカイラ代数と(2,0) CFTの関連性を通じて、M理論の高次導関数特にD⁸R⁴)の振る舞いを予測する。

11次元M理論の4グラビトン振幅

11次元の4グラビトンリー振幅は次の形で表される:

A₁₁(pᵢ; ζᵢ) = f(s, t) A₁₁ᵗʳᵉᵉ(pᵢ; ζᵢ)

ここで、A₁₁ᵗʳᵉᵉ(pᵢ; ζᵢ)はツリー振幅で、次のように表される:

A₁₁ᵗʳᵉᵉ(pᵢ; ζᵢ) = ℓ₁₁⁹ K/(stu)

Kは運動学的因子、s, t, uは11次元のMandelstam変数である。また、モーメンタム展開は次のようになる:

f(s, t) = 1 + ℓ₁₁⁶ f_R⁴(s, t) + ℓ₁₁⁹ f_₁₋ₗₒₒₚ(s, t) + ℓ₁₁¹² f_D⁶R⁴(s, t) + ⋯

この展開は、M理論における量子補正寄与を示している。

OPE係数とWNカイラ代数

(2,0) CFTにおけるOPE係数は、次の形でWNカイラ代数構造定数と関連づけられる:

λ²_k₁k₂k₃ = c⁻¹ F_R(c) + c⁻⁵ᐟ³ F_R⁴(c) + c⁻⁷ᐟ³ F_D⁶R⁴(c)

ここで、c = 4N³ - 3N - 1は中心電荷を表し、この式はM理論における保護された頂点(R⁴, D⁶R⁴項など)の構造を反映している。

Mellin空間における4点関数

Mellin空間での4点関数は、次の形で書かれる:

G_k(U, V; σ, τ) = ∫₋ᵢ∞ⁱ∞ ds dt/(4πi)² U^(s/2) V^(t/2 - 2k) 𝓜_k(s, t; σ, τ) Γ²(2k - s/2) Γ²(2k - t/2) Γ²(2k - u/2)

ここで、s + t + u = 8kを満たす必要がある。このMellin変換によって、平坦空間におけるM理論の4点振幅を得ることが可能である

平坦空間リミット

AdS₇×S⁴のコンパクト化によって、平坦空間におけるM理論振幅を次の形で再構築する:

lim_(L→∞) L³ (L/2)⁴ V₄ 𝓜_k(L²s, L²t; σ, τ) = 1/Γ(4k - 3) ∫₀∞ dβ β⁴ᵏ⁻⁴ e⁻ᵝ A₁₁ᵏ(2βs, 2βt; σ, τ)

ここで、LはAdSスケール、V₄はS⁴の体積である

高次導関数寄与

R⁴やD⁶R⁴の高次導関数寄与は、以下のように表される:

f_D²ᵐR⁴(s, t) = 1/(2ᵐ⁺³(4k - 2)ᵐ⁺³) lim_(s,t→∞) [Σᵢ B_k^(⁴⁺ᵐ,ⁱ) 𝓜_k^(⁴⁺ᵐ,ⁱ)(s, t; σ, τ)]

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん