貴方の主張が何となく分かりはじめましたが, 変わらずその主張は数学を持ち出すことなく可能であるように思われます. むしろ数学の言葉をあえて用いることで理解を遠ざけているような印象さえ感じられます. 私は誠実性を感じません.
究極的に人間が行う営みである限りは, ボトムの部分で曖昧さや人間の感覚に基づく部分が残ってしまうため数学は厳密でないという主張は少し乱暴に思えます. それこそ, これは数学の部分をあらゆる人間が行う営みに置き換えられるのではないでしょうか? 少なくとも私にとっては貴方の主張は人間が行う営みに厳密なものなどないという結論を導いてしまうように思えます.
再三になりますが, 哲学的にそのようなトピックを議論したいのであれば, 無理に数学の言葉を使わなくとも可能だと思われます. 時には数学における言葉遣いが通常の言葉遣いと異なる場合もあります. また度々言及されいる事柄のいくつかは様々なな分野で歴史的に議論, 研究されているトピックがいくつもあります. いくつかの文献を読んでみて一度整理されると, 誤解, 車輪の再発明を避けることになりますし, あなたがどういう問題, 問題意識を持っているかをきちんと言語化する助けになると思います. それに加えて, これまで人々が様々な学問領域で積み重ねてきた多くの結果に敬意を払うことが重要であると私は考えます.
別にあなたが別物と言ってるとはいってないよ?「こういう考え方にはどうお考えか」といっただけだし。 考える範疇を数学から哲学ということにしたところで「数学の定義は厳密か」...
「定義」が一意だとしても「表現」が一意でない、というのはその通りだが、 (正気な人間を想定した場合に)その「表現」から「定義」が一意に導けないのであれば、それはその定義を...
定義と表現が別ではないというなら、そもそも数学者が定義を考える最中の頭の中の、定義にあたる思考内容は、やっぱり記号列を想起してるときの記号列そのものってことか? ならた...
表現は一意ではないのだから、その人の中で誤解無く解釈が成立するのなら、思考は記号列でも自然言語でも構わないと思う そうではなく、書き換えるという動作がなんであるかを身...
そもそも 全ての自然数の加法による計算は、感覚ではなく公理、定義から導出出来るものであるということの一例と私は考えています。 1+1=2は直感的に正しそうだけど証明可能か不...
横から失礼します. 貴方の主張が何となく分かりはじめましたが, 変わらずその主張は数学を持ち出すことなく可能であるように思われます. むしろ数学の言葉をあえて用いることで理解...
記号操作が一意に定まらないとするなら、それは推論規則や公理系が成立しないことと同義だと思う 数学者も最も基本的な体系が証明できないことは認識しているわけで、「特定の規則...