定義と表現が別ではないというなら、そもそも数学者が定義を考える最中の頭の中の、定義にあたる思考内容は、やっぱり記号列を想起してるときの記号列そのものってことか?
ならたとえば「→」ならばという記号や、もっと直接的にはゲーデル文の一覧表みたいなので記号列を頭のなかで想起して記号列の書き換えについて定義するのだろうし、他人が書いた→が使われた記号列や一覧表を規則としてみれば、それに従った書き換えもまたできるわけだけど。
だとしたら「書き換える」みたいな操作はどうやって身に着けた?全く言語的でそれ以外には一切よってないのか?
「正気な人間に対して正しく一意に定義を伝達できるかどうか」と、「気が狂った人間がそれをどのようにねじ曲げて認識するか」は別の話だろ その正気をどのように保証するかは究極...
じゃあ、定義が先にあって、「定義」を書いた記号列はその表現に過ぎない別物なのであり、表現が一意でないとしても定義が一意じゃないわけではないという考え方があるけど 「定義...
定義と表現が別物なんて言ってない 厳密に表現する手段として記号論理なり推論規則なりが定められていて広く認められてるのに対して、 「¬¬¬¬¬A→Aと曲解してくる人間の存在...
別にあなたが別物と言ってるとはいってないよ?「こういう考え方にはどうお考えか」といっただけだし。 考える範疇を数学から哲学ということにしたところで「数学の定義は厳密か」...
「定義」が一意だとしても「表現」が一意でない、というのはその通りだが、 (正気な人間を想定した場合に)その「表現」から「定義」が一意に導けないのであれば、それはその定義を...
定義と表現が別ではないというなら、そもそも数学者が定義を考える最中の頭の中の、定義にあたる思考内容は、やっぱり記号列を想起してるときの記号列そのものってことか? ならた...
表現は一意ではないのだから、その人の中で誤解無く解釈が成立するのなら、思考は記号列でも自然言語でも構わないと思う そうではなく、書き換えるという動作がなんであるかを身...
そもそも 全ての自然数の加法による計算は、感覚ではなく公理、定義から導出出来るものであるということの一例と私は考えています。 1+1=2は直感的に正しそうだけど証明可能か不...
横から失礼します. 貴方の主張が何となく分かりはじめましたが, 変わらずその主張は数学を持ち出すことなく可能であるように思われます. むしろ数学の言葉をあえて用いることで理解...
記号操作が一意に定まらないとするなら、それは推論規則や公理系が成立しないことと同義だと思う 数学者も最も基本的な体系が証明できないことは認識しているわけで、「特定の規則...