----
整数a,b,c,dとし、
とする。さらに、
である。
----
であるが、f(x)は2次式の曲線であり、1次式のg(x)、-g(x)の直線とは、どちらも3点で交わることはない。
よって、この等式は、g(x)につく符号はすべて+、もしくは、すべて-になることはない。
この等式のf(x)とg(x)をx=1,2,3でそれぞれ展開すると、
ただし右辺のcとdは変数であるため、変数の算出時には右辺に付く+と-は入れ替えることができる。
よって、この3等式のうち、1つの等式のみのgに付く符号が違う、3パターンのみ考えれば良い。
また、3等式から4変数を求めるため、4変数はパラメータ変数を含む値になる。
----
1つ目と2つ目の等式より
この値を3つ目の等式に代入することで、
が得られる。
nを整数とし、a=n とすると
つまり、
である。
この式にx=1,2,3をそれぞれ代入すると、
であり、問題の条件を満たしている。
より、x=1もしくはx=-2n-6のときに成立する。
となる。n=-4ならx=2になるが、それ以外の整数nではxは1,2,3以外の整数になり条件を満たさない。
また、f(x)=-g(x)とすると、
であり、x=2,3のときのみ成立する。
よって、n=-4のときの
のみ条件が成立する。
----
1つ目と2つ目の等式より
この値を3つ目の等式に代入することで、
が得られるが、この等式を満たす整数a,bの組は存在しないので、この符号パターンにはならない。
----
1つ目と2つ目の等式より
この値を3つ目の等式に代入することで、
が得られる。
整数mとし、a=mとすると、
つまり、
である。この式にx=1,2,3をそれぞれ代入すると、
であり、問題の条件を満たしている。
より、これを満たすのはx=1,2のみである。
一方、f(x)=-g(x)とすると、
であり、これを満たすのは、x=3もしくは、x=-2m-6である。
m=-4のとき、x=2となるが、それ以外の整数mではxは1,2,3以外の値になる。
よって、条件を満たすためにはm=-4でなくてはいけない。よって、
ただし、この式は先の式と同じ式である。これはf(2)=g(2)=0であるために起こった。
----
である。