2019-05-05

論文読んだ

Identifying 3 moss species by deep learning, using the “chopped picture” method

https://arxiv.org/abs/1708.01986

何をしているのか。

著者らは、コケ植物画像判定を行うため、撮影した画像データから学習データ作成し、識別機を作っています

データは著者らが作成しており、少数の画像から判定機を作成するために、"chopped picture" methodを提案しています

この方法では、撮影画像から画像を切り分け、少部分にします。

画像枚数を多くするために、少部分間には50%のoverlapが存在します。言い換えるなら、ある画像は、他2枚の画像を元に再構築可能です。

CNN学習では、切り出した画像から、validation dataとtraining dataに分けて学習を行っています

以上の方法で、validation dataによってこの識別機の精度の計測をし、高い精度で識別できていることを主張している。

質問

提案手法は、training dataとvalidation dataに関係があるので、validation dataでの精度は高くなると思われます

言い換えると、全データ識別機がオーバーfittingしているので、validation dataでの精度が高くなっているのでは?

つぎに、この論文提案手法でのvalidation dataを識別機に食わしたさいの分類精度は、その識別機の分類精度とは言えません。

validation data・training dataに含まれていないdataセットを作成し、その新たなdataセットでの学習機の精度を検証するべきだと思います

記事への反応(ブックマークコメント)

アーカイブ ヘルプ
ログイン ユーザー登録
ようこそ ゲスト さん