2023-12-01

代入の理解にまつわる1=2の偽証

f'(1)=1となる関数があるとする

また実用的にはあまり意味のない等式だが{f(x)}'=f'(x)である。(ご存じだろうがこの形の等式は積の微分法や合成関数微分意味を持ってくる)

今この等式の両辺にxを足せば、{f(x)}'+x=f'(x)+xである

両辺に1を代入すると{f(1)}'+1=f'(1)+1

今、左辺の{f(1)}'は定数の微分意味するため0である

まり0+1=1+1より1=2なのである…。

この手の証明ありがちなゼロ除算は一見用いられていない。

しろ重要なのは、代入に対して「式に登場する同じ文字全てを同じ数あるいは文字で書き換えること」だという固定観念を持つ人ならば誰しも同じミスを犯しうることである

教育を見直すべきではなかろうか。

参考

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q10289671605

  • Wikipediaかなんかに載ってる「1=2の証明」の一覧をパターン分けして解説してるブログがあったな https://www.ajimatics.com/entry/2016/08/27/184954 アンサイクロペディアだった

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん