f'(1)=1となる関数があるとする
また実用的にはあまり意味のない等式だが{f(x)}'=f'(x)である。(ご存じだろうがこの形の等式は積の微分法や合成関数の微分で意味を持ってくる)
今この等式の両辺にxを足せば、{f(x)}'+x=f'(x)+xである。
今、左辺の{f(1)}'は定数の微分を意味するため0である。
むしろ重要なのは、代入に対して「式に登場する同じ文字全てを同じ数あるいは文字で書き換えること」だという固定観念を持つ人ならば誰しも同じミスを犯しうることである。
教育を見直すべきではなかろうか。
参考
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q10289671605
Wikipediaかなんかに載ってる「1=2の証明」の一覧をパターン分けして解説してるブログがあったな https://www.ajimatics.com/entry/2016/08/27/184954 アンサイクロペディアだった