「Pattern Recognition」を含む日記 RSS

はてなキーワード: Pattern Recognitionとは

2010-06-29

http://anond.hatelabo.jp/20100628022930

なんか話が合いそうだなと思ったので返信。増田なのがちょっと勿体ない気もするけど。

ちなみに俺のバックグラウンドを書いておくと、学生時代の専攻は工学系なんだけど、それにしてはオーバースペックなぐらい数学をかじってた感じの方面。あんまり詳しく書くと特定されそうなんでこの程度で勘弁ね。

"Pattern Recognition and Machine Learning"のビショップ物理出身だけど、あの年代は確かにそういう色が強かったのかもしれない。

確かにその種の傾向は上の世代までかもしれないね。

ビショップ物理出身なのは知らなかったけど、それ聞いてなんか合点のいく気がした。何か妙に数学へのマニアックなこだわりの片鱗が見える割に、数学屋から見ると妙な記号法を使うんだよね、あの人。

工学としては例外的に高度な(物理の道具としてはまあ普通の)数学を使ったりするので

全然高度じゃないです><

いや、だからあくまで「工学として」ね。線型代数と、微積の「計算」以外を使うことって工学ではそうないでしょ(フーリエ変換とかだって工学の文脈では所詮「計算」だもんね。)。

制御理論とか機械学習では、関数解析の概念がちょっとだけ出てくるけど、あんなんでも数学屋にとってはオアシスだね。

もっとも、カーネル法関係ではいつも申し訳程度にMercerの定理が言及されているのを見ると「なんだかなあ」っていつも思うけど。

情報幾何とかは(無駄に)高度だけど、実用性はあんまないオナニー(しかも日本でしか流行ってない)感があるし。

そうそう、あれに限らず統計学理論の一部にはものすごく違和感あるんだよね。

増田だから書けるけど、情報幾何なんて「お前、双対接続って言いたいだけちゃうんかと」って感じだし、他にも色々、何でも抽象化して一般化すりゃいいってもんじゃないんだぞと言いたくなることが色々。

統計学理論機械学習パターン認識の関係は、数理物理理論物理実験物理の関係に似てる気がするんだよね。しかも統計学場合普遍的に綺麗な構造なんてものがあると思えないだけに余計に始末が悪い。「ひも理論実験で検証できないから科学ではない」って批判があるらしいけど、統計学にも同じ批判されても仕方ない理論が色々あるよね。データから何かを推定する理論なのに、データがどれだけあっても実用的には絶対まともな結果が出せないモデルとか。

CVレイトレーシングで経路積分使って云々というのもあったけど(その人はGoogleに言ってアドセンスかなんか作ってるらしい)、あれもまぁ適当パス空間で平均とるだけって感じがするし…。

CVはまあ何でもありの世界だよね。誰か無限次元リー群とか使ってみてくれないかなと思う。というか俺自身が一度やろうとして無意味なことに気づいてやめたんだけどさ。

結局性能はあんま変わらないからもっとシンプルモデルでいいよとかなってそう。

イジングモデルとかその辺は不勉強なんであまりよく知らないんだけど、一般的にその手のモデルは、性能が変わらないだけならいいけど、計算量がどうとかデータ量がどうとかで事実上使えなかったりすることが多いんだよね。着想として物理からアイディアを持ってくるのはいいんだけど、物理から持ってきたアイディアなら必ず筋がいいはずみたいな思いこみ(そう思いたくなる気持ちはよくわかるけど)はどうかと思う。

普通に日本の伝統新卒採用でそういう会社に行く人はいるけど、やってることは工学とかあるいは良くわからない専攻の人と同じな気がする。これはちょっと曖昧だけど。

うん、そうなってしまうのは仕方ないでしょうね。

ただ逆に、変わり種のバックグラウンド持ってる人は道具箱が豊富だから、新しいこと思いつく可能性もあるわけで、採用されるとしたらむしろそれを買われてじゃないかな。俺自身、工学部の人は普通は絶対知らない数学を色々知ってるので、それをどうにか武器にできないかいろいろ試行錯誤中だよ。というか特許とかの形で発表したのもすでにあるけどね。

特に情報系の分野は実装力で評価されることが多いし…。実装力は数値計算得意とかそういうのとは全く別のスキルだよね。プログラミングマニア的な要素が必要。

分野にもよるけどね。情報システム計算機自体を専門にして、ハードとかインターフェイスに近い部分をやってたらどうしてもそうなるけど、信号とか画像とか音声とか言語とかの処理のコア部分を作るときにはコーディング能力よりも紙と鉛筆能力の方が大事・・・、だと思いたい。

どうもパソコンマニア的気質は中高生のときに飽きてしまって、「PCパーツの種類とか流行言語とか覚えたってどうせ10年したらすぐに廃れるんだから」という感じで、余りはてな民的に新しいネタ追いかけたくないんだよね。クロージャって何ですか、ああそうですね閉包ですね、集合の内部と境界の和集合ですねっていう感性の持ち主なので。正直、コーディングは単純作業と認識してます。

2010-06-28

http://anond.hatelabo.jp/20100628012806

まぁネタで訊いたんですけどね…。

信号処理とか制御とか機械学習物理からネタ引っ張ってきてたり

これも実際問題(特に企業での採用とかでは)情報系の独壇場って感じだね。

金融のがまだマシ。

"Pattern Recognition and Machine Learning"のビショップ物理出身だけど、あの年代は確かにそういう色が強かったのかもしれない。

金融はまだ金融専攻がほぼ無い状態だから物理数学出身者が入り込む隙が多い気がする。

工学としては例外的に高度な(物理の道具としてはまあ普通の)数学を使ったりするので

全然高度じゃないです><

情報幾何とかは(無駄に)高度だけど、実用性はあんまないオナニー(しかも日本でしか流行ってない)感があるし。

CVレイトレーシングで経路積分使って云々というのもあったけど(その人はGoogleに言ってアドセンスかなんか作ってるらしい)、あれもまぁ適当パス空間で平均とるだけって感じがするし…。

画像処理とかでマルコフ確率場の統計物理学的な解析(イジングモデルとかポッツモデルとか出てくるアレ)でレプリカ法とか繰り込み群とか使ってるのも見たことあるけど(結構前の研究だからきっと今はもっと進んでいるはず)、企業で使うことってあるのかなあ。結局性能はあんま変わらないからもっとシンプルモデルでいいよとかなってそう。だったら物理の奴なんかいらねーじゃんみたいな。

あと勿論、理論物理の人は重工業方面でも引き合いが強いだろうしね。

これは…どうなんだろうか?

普通に日本の伝統新卒採用でそういう会社に行く人はいるけど、やってることは工学とかあるいは良くわからない専攻の人と同じな気がする。これはちょっと曖昧だけど。

ただ、採用現場では必ずしも好かれるとは限らない

これはガチだね。

特に情報系の分野は実装力で評価されることが多いし…。実装力は数値計算得意とかそういうのとは全く別のスキルだよね。プログラミングマニア的な要素が必要。

あとはまぁお決まりの暗号分野とかもあるけど、暗号じゃそんなにイス無いだろうし…。

最近はやっぱデータマイニング系に流れてるのかなあ。あれも数理的な素養というよりは職人芸的な色彩が強いけど。

という感じで実際問題厳しいなあと思います。

 
ログイン ユーザー登録
ようこそ ゲスト さん