●×●=256が解ける子解けない子の差
http://president.jp/articles/-/23368
Q:AD=CD、BC=10cm、四角形ABCDの面積が64平方cmのとき、辺ABの長さは何cmですか。
辺ABをx(cm)とおく。
この四角形は∠ABCと∠CDAの対角の和が180°なので、円に内接する。この円の中心点をO、半径をrとする。
また、ACに対角線を引いておく。
∠CDAは、弧ACに対する円周角で90°なので、ACは円の直径になり、中心点OはAC上にある。
二等辺三角形DACの頂角Dから底辺ACに垂線を下すと、垂線は底辺ACと直角に交わり、底辺ACを二等分する。
S1 = 1/2 × 2r × r
S1 = r2
S2 = 5x
四角形ABCDの面積は
r2 + 5x = 64
r2 = 64 - 5x ...(1)
(2r)2 = x2 + 102
4r2 = x2 + 100 ...(2)
(1)と(2)の連立方程式を解く。
(2)に(1)を代入
4(64 - 5x) = x2 + 100
256 - 20x = x2 + 100
x2 + 20x - 156 = 0
(x + 26)(x - 6) = 0
x > 0より x = 6
よって、6 cm