2020-09-03

数学夏祭り 問3

#数学夏祭り ウェブサイト

https://mathmatsuri.org/


#数学夏祭り ツイッターアカウント

https://twitter.com/mathmatsuri



問3


エクセル計算させたい衝動を抑えつつ、出題者に指示されるがままにTn(x)について考えてみる。


T1(x)=x

T2(x)=2x^2-1

T3(x)=4x^3-3x

T4(x)=2(2x^2-1)^2-1=8x^4-8x^2+1


法則が見えてくるだろうか。自信がなければ気が済むまで計算すればよいのだろうが、

・Tn(x)の次数はnに等しい

・最高次数の係数は2^(n-1)

・nと偶奇が一致しない次数の係数は0(項は1次飛ばしで登場する)

くらいは言えそう。必要ものは後で示すこととしよう。


Πに慣れていないとKの式にビビるかもしれないが、下の説明の通りにk=1~40を代入すると

K=cos(π/79)cos(3π/79)cos(5π/79)…cos(77π/79)cos(79π/79)とわかる。 …①


さてTn(x)を利用するとして、右辺はT1(x)T3(x)T5(x)…T77(x)T79(x)にx=cos(π/79)を代入したものに等しいけれど、さすがに厳しそう。1+3+…+77+79=1600次の整式を取り扱うのは狂気だし、xもよくわからない値だし。


nを一つだけ選ぶとしていくつにすればよさそうか。まず思いつくのは79だろう。

上で推測した性質からT79(x)=2^78x^79+?x^77+…+?x^3+?xとなりそう。 …②

x=cos(π/79)を代入すると左辺はT79(cos(π/79))=cos(79π/79)=-1となる。


もしや…


x=cos(3π/79)を代入すると左辺はT79(cos(3π/79))=cos(79*3π/79)=-1となる。

x=cos(5π/79)を代入すると左辺はT79(cos(5π/79))=cos(79*5π/79)=-1となる。

x=cos(79π/79)を代入すると左辺はT79(cos(79π/79))=cos(79*79π/79)=-1となる。


まりT79(x)=-1の解がx=cos(π/79), cos(3π/79), cos(5π/79), …, cos(77π/79), cos(79π/79)となることがわかる。解の個数は40個。

y=T79(x)は-1≤x≤1の範囲で極大値1と極小値-1を交互に取っていくので、これとy=-1の交点を考えるとx=cos(π/79), cos(3π/79), cos(5π/79), …, cos(77π/79)は二重解となることがわかる。x=cos(79π/79)だけは一重解。


参考:y=T5(x)のグラフ。これとy=-1はx=cos(π/5), cos(3π/5)で接してx=cos(5π/5)で交わる。

https://twitter.com/totsuration/status/1301359506748633089


まり二重解を解2つとカウントすると解の個数は79個。②が正しいとすればT79(x)は79次式なのでT79(x)+1=k(x-cos(π/79))^2(x-cos(3π/79))^2(x-cos(5π/79))^2…(x-cos(77π/79))^2(x-cos(79π/79))と因数分解できる。x^79の係数を比較してk=2^78。


①の形が現れたことに気づいただろうか。そう、定数項を比較すればよい。1=-2^78cos^2(π/79)cos^2(3π/79)cos^2(5π/79)…cos^2(77π/79)cos(79π/79)である

右辺はK^2/cos(79π/79)=-Kに等しいので1=2^78 K^2よりK=-2^(-39)とわかった。


[|log2|K||]=39


終了!…ではない。②で使用した冒頭のTn(x)の性質3項目(補題)を示す必要がある。漸化式→帰納法に持ち込めれば楽そう。加法定理公式を考えると2項間の漸化式は難しそうなので3項間の漸化式を求める。


cos(n+2)θ+cos(nθ)=2cos(n+1cosθなので

T(n+2)(x)+Tn(x)=2xT(n+1)(x)

T(n+2)(x)=2xT(n+1)(x)-Tn(x)


T1(x)=x

T2(x)=2x^2-1

でありn=1,2で

・Tn(x)の次数はnに等しい

・最高次数の係数は2^(n-1)

・nと偶奇が一致しない次数の係数は0

は満たされる。


n=k, k+1上記条件を満たすとき

n=k+2においてT(k+2)(x)=2xT(k+1)(x)-Tk(x)も

・次数はk+2に等しい

・最高次数の係数は2^(k+1)

・k+2と偶奇が一致しない次数の係数は0

が言える。


よってすべての自然数nについて補題は示された。


[|log2|K||]=39

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん