「polymorphism」を含む日記 RSS

はてなキーワード: polymorphismとは

2009-12-21

http://anond.hatelabo.jp/20091221113318

ものすごい重箱のすみをつつくけど

動的で型制約のないスクリプト言語

型制約って、parametric polymorphism の用語だと思う

Java だと Generics で?とか

C++だと concept で書けるんだっけ?

C#は知らんけど一番凄そう

そしてお約束教科書

http://www.amazon.co.jp/dp/0262162091/

2007-10-08

とある元エセ数学屋のぶつくさ

「頭のいい人は説明もうまい」問題で、一番肩身が狭いのが数学屋と哲学屋。哲学屋さんの弁解は哲学屋さんに任せるとして、エセ数学屋の立場からその弁解を書かせて欲しい(哲学屋さんも事情は似たようなものだと思うけれど)。

まず、世間では誤解されてると思うのだが、数学というのは理系の他分野(物理学とか、生物学とか)とは少し性格が違う。数学は、具体的な対象を想定しない。むしろ、具体的な対象と遊離したところを記述するための「言葉」を作る学問なのだ。

よく言われることだが、新たな数学理論発見とは、わかりやすい概念や記号法を発明することといっても過言ではない。一番わかりやすいのが「未知数をxなど文字で置き換える」というものだろう。これによって、古代エジプト古代ギリシャ賢者大勢を悩ませた問題も、中学生の練習問題に早変わりする。しかし一方で、多くの賢人を悩ませた問題を少数の記号やキーワードに集約するのだから、そもそもそんなものを簡単に説明できる方がおかしい。中学校あたりから数学が途端に難しくなるのはこのためだ。

抽象概念を説明することの難しさは、プログラミング世界とも共通している点があるだろう。たとえば、「多態性 (polymorphism)」という言葉機械音痴の人に説明できるだろうか、考えてみてほしい(このたとえのわからない人は、次の段落まで読み飛ばしてほしい)。もちろん、例えば「同じ『鳴く』という動作でも、犬は『ワン』で、猫は『ニャー』だ」などと、わかった気にさせるようなたとえ話でごまかすことはできるだろう。だが、そんな「説明」が役に立たないことは明らかだ。「そんなことの何がすごいのか、ポリバレントだかなんだか知らないがそんな偉そうな名前をつけるほどのことか」とかいわれて終わりである。現実に「説明」を求められる場合とは、「誰かに金を出させるために説得しなければいけない場合」なのである。ユーザ企業に「オブジェクト指向による開発」の必要性を説得するとき、そのような子供だましでは金を出してもらえないことは明らかだろう。

そして数学は、プログラミング言語よりもっと包括的に「人間の思考の一部を記述する言語」なのである(正確には、コンピュータサイエンス数学の一分野である)。そして、プログラミング言語などという概念たかだかこの数十年のものにすぎないが、近代数学は数百年の積み重ねがあるのである。素人専門家の乖離にもそれだけの差があると思ってもらって構わない。説明が絶望的に困難なことは明らかだ。その困難さは、たとえば英語を知らない子供に「関係代名詞」を説明するのと同じぐらい難しい。いや、数学は「頭の中の普段使っていない部分」を使う言語だから、英語などよりもっと難しいと言っていいかもしれない。英語日本語の間では直訳はできないことはないが、数学語やプログラミング言語日本語の直訳は不可能だからだ(できるのならば、プログラマは全員失業である)。

しかし、こうした事情を多くの人はわかってくれない。そこで、「数学屋(と哲学屋)は物事をわざわざ小難しく説明する権威主義者だ」だの「他の分野の専門家に比べて説明能力に欠けている」だのと非難を浴びるのである。こういうハンディを背負っていることがなかなかわかってもらえないのである。

追記

多態性のあたりはあまりいい例ではなかったかもしれない。犬はワンで猫はニャーというのは、多態性という概念の発想を適切にとらえたたとえ話ではあるからだ。純粋数学の場合は、こういうわかりやすい例が見あたらないものも多いのである(たとえば「解析関数」を「複素数」や「微分」を知らない人に説明するとなるともうお手上げだ)。無論、こういうたとえ話が、多態性概念プログラミング世界でいかに有用であるかを説明することにほとんど貢献していないのは明らかだけれども。プログラミング経験がない人には、それだけのことがいかに役に立つのかなど到底実感ではわかってもらえないだろう。

蛇足

なお、こんな記事が話題になっているが、この程度の説明ならまともな数学屋なら誰でもできるので念のため。このスレッドの住人はsinとかcosのような高校数学概念も怪しかったわけだが、そんな人を相手に文中に出てきた「バナッハ空間」だの「ヒルベルト空間」だのの説明をさせられたらとても困っていたはずである。正直、これらの概念専門家には「イロハのイ」レベルのことに過ぎないが、ピアノで「猫踏んじゃった」しか弾けない人に「エリーゼのために」を教え込むのと同じぐらいは難しいだろうと思う。それぐらいのレベルの差がある。

蛇足の蛇足

ついでに、上のスレッドで挙がっている「日本語論理的でない」とか「英語フランス語数学に向いている」というのはウソと言える。言語能力は、相互に翻訳ができれば等価であるといってよいからだ。実際問題としては、論理的で厳密な文章ほど、直訳は簡単である。つまり、言語による論理能力の差というものは存在しないといってよいのだ。言語によって一番表現力の差が生じるのは、むしろ「前衛詩」のような、一番「論理的でない」部分である。

 
ログイン ユーザー登録
ようこそ ゲスト さん