g(x)h(x) についてf(x)=g(x)h(x)などと置けばf(x+h)=g(x+h)h(x+h)。 ここから{f(x)}‘=lim(h→0){(f(x+h)-f(x))/h}= lim(h→0){(g(x+h)h(x+h)-g(x)h(x))/h}
)/h}という感じで積の微分の公式が導かれていくことでしょう。
それなら明らかにx=aにおける微分係数はこの式を逆に辿る感じでlim(h→0){(g(a+h)h(a+h)-g(a)h(a))/h} =lim(h→0){(f(a+h)-f(a))/h}= {f(a)}‘でしょう。
一方でf(x)にaを代入したもののxでの微分をあえて表記するとすればこれまた {f(a)}‘となるそうです。数学なのに意味の違うものが全く同じ表記とか紛らわしくね?てかそんなのあり?
に対する回答
f'(x)=g'(x)h(x)+g(x)h'(x)
ゆえに
f'(a)=g'(a)h(a)+g(a)h'(a) (1)
x=aにおける微分係数はこの式を逆に辿る感じでlim(h→0){(g(a+h)h(a+h)-g(a)h(a))/h} =lim(h→0){(f(a+h)-f(a))/h}= {f(a)}‘でしょう。
前者はf'(a)と一般に表すのではないでしょうか。
ふざけてって感じじゃなくて本気で分かってなさそうだし数学力以前に読解力の低下が叫ばれるなあ