VgyfaIOxXLdXSABOC2XGIZIn2WmqiOhuT9Ut9ZcMPfYvdtLhTV3qY_NyuyKnJfLCRJGncEFBcub1dbk09oxsfD4xFomxr0fRML4Hv2jlycBIhfOUVUuq0MHuigRqVwToq4s3o9AV2A878CI1H71VUuDZPgDLacmD3pjiSXKoMY7v3u0ZwqrTGd1QGkcaV7_usunYIje2gj8TbfC8VTxdtJZSkMwA8JIs7O5lDH6711G8fJSqOWOE2EVUu0ZhSuMU7yy48OCE36kseX_Oh99lYlA7zNxS3WFqOX04aMTsdlQdadpVkkedGpz4Ux_Nj8g1G5TRZB27VflVqNsyJ9BZfNB3Tic544pOZg6arvlT0RuvKp3CjMDprtpoQMYETJlwQAGoS9ejRP2taCN0zeGPGIhXdSTkO0HyIiBE7OEka8Om1d7lLzFJ2TW7uFRbgtgiFIpT5hYClqSH_2YjJT5yEN0yHN0kb_OL7xta0WMqQyAmNBBFBB2AZG26A64nhQou3VNI5K0IP5mU5LZlX274iIsoT5wII2WDhl5hyC_FzuDnJlMe9qkWHpW106V77cZGiOemUnRDMHYSFwW1KHKRAcrupDJFVB4lBZkJ6ozN0o30Yz0XbrPEEd7BTv2w2YcZMGLnuoi9KLHvJZQzJC2zXb1AO1SekOk_CcfOMdyITdlW6u5cTiiYlmphRLknSWWwcqQWpOgK6K_rQDC3NAtuwSW9fENYpl0CaCWBhnxJjRDRTHCHy9Y9ZRUCfGPeGZ0NubG9iN_TNZZvYAZNUYgiKLpjf8LoY6Dc9dWFnIeV13ThV68kZ6UgykkrkRlMWoJgJmrJ1KIBj7k4hO_wBtJfd1xzDGWzcWgTvJXSze2ku4AnCS_IMYXyY4gHPABlrI1niDHPReJfDvI2lmeFmMP8ZL8vT_s9CMBTqvWQ8EsPqc26tXaQrQHhD3dEha4jaqQI3Nk3C_y4slMDxT6ozSC7LhAPacEnqhuyBN_11AuoTwa8f4Mk1UYzkBpNW558JjAT
x(t) = ((-58/7 sin(14/9 - 16 t) - 61/11 sin(14/9 - 12 t) - 43/8 sin(3/2 - 10 t) - 108/7 sin(11/7 - 8 t) - 193/9 sin(14/9 - 6 t) - 53/4 sin(4/3 - 5 t) + 18741/4 sin(t + 11/7) + 356/5 sin(2 t + 47/10) + 359/5 sin(3 t + 11/7) + 659/47 sin(4 t + 33/7) + 237/7 sin(7 t + 11/7) + 445/7 sin(9 t + 8/5) + 147/5 sin(11 t + 8/5) + 13/2 sin(13 t + 3/2) + 14/9 sin(14 t + 9/7) + 3/4 sin(15 t + 3/5) - 3448/7) θ(75 π - t) θ(t - 71 π) + (18175/9 sin(t + 11/7) + 35/3 sin(2 t + 14/9) + 1195/6 sin(3 t + 11/7) + 199/22 sin(4 t + 11/7) + 16851/7) θ(71 π - t) θ(t - 67 π) + (-27/5 sin(14/9 - 8 t) - 23/3 sin(17/11 - 6 t) - 39/5 sin(14/9 - 4 t) + 12163/6 sin(t + 11/7) + 89/5 sin(2 t + 11/7) + 595/3 sin(3 t + 11/7) + 367/5 sin(5 t + 11/7) + 116/3 sin(7 t + 11/7) - 19148/5) θ(67 π - t) θ(t - 63 π) + (-881/7 sin(14/9 - 16 t) - 277/4 sin(14/9 - 12 t) - 117 sin(11/7 - 11 t) - 166 sin(11/7 - 10 t) - 624/7 sin(11/7 - 9 t) - 713/5 sin(11/7 - 4 t) - 353/5 sin(11/7 - 3 t) - 13/5 sin(11/7 - 2 t) + 199/4 sin(t + 11/7) + 18/5 sin(5 t + 37/8) + 437/10 sin(6 t + 8/5) + 155/12 sin(7 t + 5/3) + 23/12 sin(8 t + 13/6) + 121/8 sin(13 t + 14/3) + 760/9 sin(14 t + 8/5) + 75/4 sin(15 t + 14/9) + 797/7 sin(17 t + 8/5) - 5461/8) θ(63 π - t) θ(t - 59 π) + (-81/2 sin(3/2 - 6 t) - 209/16 sin(13/14 - 4 t) - 103/5 sin(9/8 - 2 t) + 24415/7 sin(t + 11/7) + 1571/3 sin(3 t + 11/7) + 463/4 sin(5 t + 11/7) + 428/7 sin(7 t + 11/7) + 172/9 sin(8 t + 11/8) + 95/3 sin(9 t + 3/2) + 284/7 sin(10 t + 37/8) - 10097/33) θ(59 π - t) θ(t - 55 π) + (-172/3 sin(11/7 - 13 t) - 807/7 sin(11/7 - 9 t) + 864/5 sin(t + 11/7) + 6045/7 sin(2 t + 11/7) + 136/3 sin(3 t + 14/9) + 25/6 sin(4 t + 30/7) + 657/8 sin(5 t + 11/7) + 8218/33 sin(6 t + 11/7) + 617/5 sin(7 t + 33/7) + 199/2 sin(8 t + 11/7) + 7744/29 sin(10 t + 11/7) + 235/4 sin(11 t + 14/9) + 335/6 sin(12 t + 33/7) + 683/5 sin(14 t + 33/7) + 42 sin(15 t + 11/7) + 285/8 sin(16 t + 11/7) + 280/31 sin(17 t + 47/10) + 427/4 sin(18 t + 11/7) + 282/5 sin(19 t + 11/7) + 32/5 sin(20 t + 14/3) + 17 sin(21 t + 11/7) - 2441/4) θ(55 π - t) θ(t - 51 π) + (-173/3 sin(20/13 - 8 t) - 80/3 sin(2/5 - 4 t) + 5601/5 sin(t + 11/7) + 173/8 sin(2 t + 3/4) + 1608/7 sin(3 t + 19/13) + 372/5 sin(5 t + 9/7) + 155/7 sin(6 t + 3/4) + 361/4 sin(7 t + 3/2) + 1373/28 sin(9 t + 14/3) + 122/5 sin(10 t + 35/8) + 179/10 sin(11 t + 29/7) + 147/10 sin(12 t + 12/5) + 53/4 sin(13 t + 13/6) + 83/5 sin(14 t + 17/10) - 5417/8) θ(51 π - t) θ(t - 47 π) + (-249/10 sin(13/9 - 6 t) - 2573/7 sin(11/7 - 4 t) - 76/3 sin(14/9 - t) + 2069/4 sin(2 t + 11/7) + 6079/9 sin(3 t + 11/7) + 1049/9 sin(5 t + 11/7) + 2623/46 sin(7 t + 8/5) + 39/2 sin(8 t + 3/2) + 79/2 sin(9 t + 14/3) + 91/5 sin(10 t + 33/7) + 99/4 sin(11 t + 8/5) + 30058/9) θ(47 π - t) θ(t - 43 π) + (-535/17 sin(14/9 - 10 t) - 1566/7 sin(11/7 - 4 t) + 1435/8 sin(t + 8/5) + 2383/9 sin(2 t + 8/5) + 2861/5 sin(3 t + 8/5) + 145/3 sin(5 t + 11/7) + 297/7 sin(6 t + 8/5) + 26/5 sin(7 t + 25/6) + 791/10 sin(8 t + 13/8) + 51/5 sin(9 t + 32/7) + 265/6 sin(11 t + 8/5) + 20/3 sin(12 t + 9/2) - 31695/7) θ(43 π - t) θ(t - 39 π) + (-151/7 sin(6/7 - 7 t) + 7955/2 sin(t + 5/3) + 411/8 sin(2 t + 1/9) + 4576/15 sin(3 t + 11/6) + 107/5 sin(4 t + 17/5) + 110/9 sin(5 t + 63/31) + 55/9 sin(6 t + 18/5) - 4994/7) θ(39 π - t) θ(t - 35 π) + (3476/5 sin(t + 4/3) + 433/5 sin(2 t + 25/6) + 579/7 sin(3 t + 5/3) + 113/5 sin(4 t + 23/5) + 6084/5) θ(35 π - t) θ(t - 31 π) + (-619/7 sin(9/7 - 3 t) + 802 sin(t + 37/8) + 421/5 sin(2 t + 11/7) - 23264/9) θ(31 π - t) θ(t - 27 π) + (-71/4 sin(7/9 - 9 t) - 289/9 sin(6/7 - 8 t) - 922/3 sin(1/10 - 3 t) - 3601/36 sin(5/4 - 2 t) + 30703/7 sin(t + 1) + 706/9 sin(4 t + 5/6) + 265/14 sin(5 t + 11/5) + 278/9 sin(6 t + 1/8) + 341/10 sin(7 t + 4/5) - 605) θ(27 π - t) θ(t - 23 π) + (10764/7 sin(t + 40/9) + 519/4 sin(2 t + 28/11) + 707/4 sin(3 t + 27/7) + 685/14 sin(4 t + 21/10) + 355/7 sin(5 t + 11/3) + 128/3 sin(6 t + 7/5) + 96/5 sin(7 t + 29/9) + 272/9 sin(8 t + 18/17) + 71/8 sin(9 t + 16/5) + 127/7 sin(10 t + 4/7) + 71/9 sin(11 t + 30/7) + 46/3 sin(12 t + 2/7) - 3661/6) θ(23 π - t) θ(t - 19 π) + (-115/7 sin(1/7 - 13 t) - 462/13 sin(1/6 - 9 t) - 353/3 sin(6/5 - 7 t) - 6463/6 sin(5/6 - 2 t) + 340/3 sin(8 t) + 22885/12 sin(t + 6/5) + 443/7 sin(3 t + 19/5) + 295/14 sin(4 t + 5/2) + 1466/7 sin(5 t + 27/10) + 288/5 sin(6 t + 13/4) + 265/8 sin(10 t + 16/7) + 60/7 sin(11 t + 21/5) + 930/19 sin(12 t + 16/7) - 5475/8) θ(19 π - t) θ(t - 15 π) + (3299/2 sin(t + 7/6) + 377/5 sin(2 t + 7/6) + 139/6 sin(3 t + 2/7) + 10166/7) θ(15 π - t) θ(t - 11 π) + (-30228/19 sin(16/15 - t) + 200/7 sin(2 t + 35/12) + 316/9 sin(3 t + 7/3) + 178/5 sin(4 t + 12/7) + 365/9 sin(5 t + 21/5) + 18/7 sin(6 t + 11/9) - 20196/7) θ(11 π - t) θ(t - 7 π) + (-257/4 sin(23/24 - 15 t) - 2071/4 sin(1/3 - 3 t) - 99793/36 sin(10/9 - 2 t) + 51290/7 sin(t + 1) + 6064/9 sin(4 t + 3/4) + 2497/5 sin(5 t + 16/9) + 2413/8 sin(6 t + 11/4) + 5585/21 sin(7 t + 1) + 493/3 sin(8 t + 5/3) + 859/11 sin(9 t + 3/2) + 462/5 sin(10 t + 26/7) + 421/4 sin(11 t + 2) + 735/8 sin(12 t + 5/2) + 63 sin(13 t + 8/3) + 425/7 sin(14 t + 71/18) - 4853/8) θ(7 π - t) θ(t - 3 π) + (-4027/7 sin(4/3 - 5 t) + 55361/7 sin(t + 1) + 2324/3 sin(2 t + 31/16) + 705/7 sin(3 t + 11/9) + 2194/11 sin(4 t + 26/25) + 977/9 sin(6 t + 13/4) + 284 sin(7 t + 27/7) + 1026/7 sin(8 t + 7/5) + 677/8 sin(9 t + 19/7) + 1023/8 sin(10 t + 5/9) - 4475/8) θ(3 π - t) θ(t + π)) θ(sqrt(sgn(sin(t/2))))
y(t) = ((-59 sin(14/9 - 16 t) - 5/2 sin(4/3 - 15 t) - 466/7 sin(17/11 - 14 t) - 14/5 sin(14/9 - 13 t) - 265/12 sin(11/7 - 12 t) - 185/2 sin(11/7 - 8 t) - 38/3 sin(11/7 - 7 t) - 2523/8 sin(11/7 - 6 t) - 7094/7 sin(11/7 - 4 t) - 451/5 sin(14/9 - 3 t) + 581/5 sin(t + 11/7) + 707/6 sin(2 t + 8/5) + 289/36 sin(5 t + 4/3) + 93/7 sin(9 t + 12/7) + 592/9 sin(10 t + 13/8) + 137/9 sin(11 t + 14/3) - 63797/8) θ(75 π - t) θ(t - 71 π) + (-311/8 sin(11/7 - 4 t) - 1619/5 sin(11/7 - 2 t) - 471/4 sin(11/7 - t) + 107/3 sin(3 t + 11/7) + 4487/3) θ(71 π - t) θ(t - 67 π) + (-143/6 sin(11/7 - 6 t) - 709/10 sin(11/7 - 4 t) - 3736/15 sin(11/7 - 2 t) + 3961/30 sin(t + 11/7) + 27/7 sin(3 t + 33/7) + 145/6 sin(5 t + 33/7) + 52/7 sin(7 t + 33/7) + 37/6 sin(8 t + 33/7) + 19529/14) θ(67 π - t) θ(t - 63 π) + (-11/5 sin(14/9 - 17 t) - 161/20 sin(14/9 - 16 t) - 52/7 sin(11/7 - 12 t) - 3/2 sin(3/2 - 11 t) - 67/10 sin(14/9 - 10 t) - 13/6 sin(14/9 - 4 t) + 573 sin(t + 11/7) + 172/19 sin(2 t + 33/7) + 185/6 sin(3 t + 11/7) + 179/7 sin(5 t + 11/7) + 37/9 sin(6 t + 11/7) + 79/5 sin(7 t + 11/7) + 14/3 sin(8 t + 11/7) + 107/7 sin(9 t + 8/5) + 7/4 sin(13 t + 8/5) + 11/12 sin(14 t + 32/7) + 27/10 sin(15 t + 8/5) - 4217/3) θ(63 π - t) θ(t - 59 π) + (35/3 sin(t + 33/7) + 550/9 sin(2 t + 47/10) + 255/4 sin(3 t + 17/11) + 979/6 sin(4 t + 14/9) + 245/9 sin(5 t + 3/2) + 101/4 sin(6 t + 17/11) + 820/11 sin(7 t + 3/2) + 437/7 sin(8 t + 3/2) + 339/7 sin(9 t + 14/3) + 75/4 sin(10 t + 3/2) - 17567/5) θ(59 π - t) θ(t - 55 π) + (-25/4 sin(11/7 - 19 t) - 621/5 sin(11/7 - 5 t) + 498/5 sin(t + 11/7) + 11/8 sin(2 t + 22/5) + 2609/15 sin(3 t + 11/7) + 149/3 sin(4 t + 8/5) + 52/5 sin(6 t + 14/3) + 271/10 sin(7 t + 14/9) + 1112/7 sin(8 t + 11/7) + 557/6 sin(9 t + 33/7) + 109/8 sin(10 t + 14/3) + 403/6 sin(11 t + 33/7) + 113/3 sin(12 t + 8/5) + 609/8 sin(13 t + 11/7) + 11/8 sin(14 t + 9/2) + 193/7 sin(15 t + 11/7) + 117/10 sin(16 t + 11/7) + 204/5 sin(17 t + 33/7) + 77/10 sin(18 t + 33/7) + 401/20 sin(20 t + 33/7) + 56/3 sin(21 t + 33/7) - 56953/7) θ(55 π - t) θ(t - 51 π) + (-459/7 sin(1/8 - 13 t) - 459/5 sin(7/5 - 11 t) + 89/5 sin(t + 31/15) + 4109/11 sin(2 t + 14/3) + 23 sin(3 t + 23/8) + 2692/23 sin(4 t + 40/9) + 968/13 sin(5 t + 9/4) + 1201/6 sin(6 t + 11/6) + 1017/5 sin(7 t + 9/5) + 5035/8 sin(8 t + 14/3) + 1697/9 sin(9 t + 23/5) + 996/7 sin(10 t + 13/8) + 166 sin(12 t + 4/3) + 736/5 sin(14 t + 28/27) - 29201/5) θ(51 π - t) θ(t - 47 π) + (7611/8 sin(t + 11/7) + 2098/3 sin(2 t + 11/7) + 4549/5 sin(3 t + 11/7) + 3369/5 sin(4 t + 33/7) + 484/5 sin(5 t + 14/3) + 125/9 sin(6 t + 13/8) + 402/5 sin(7 t + 23/5) + 267/2 sin(8 t + 14/3) + 730/7 sin(9 t + 37/8) + 2056/17 sin(10 t + 14/3) + 35 sin(11 t + 12/7) - 5032) θ(47 π - t) θ(t - 43 π) + (-1233/22 sin(7/5 - 9 t) - 566/5 sin(16/11 - 8 t) - 733/12 sin(14/9 - 7 t) - 919/7 sin(11/7 - 5 t) - 3557/3 sin(14/9 - 3 t) - 2939/4 sin(14/9 - 2 t) + 6148/11 sin(t + 11/7) + 1185/7 sin(4 t + 3/2) + 1600/13 sin(6 t + 8/5) + 59/5 sin(10 t + 9/7) + 71/9 sin(11 t + 13/3) + 164/5 sin(12 t + 13/8) - 41799/8) θ(43 π - t) θ(t - 39 π) + (-117/5 sin(4/5 - 6 t) - 145/4 sin(5/4 - 4 t) - 1311/7 sin(7/5 - 2 t) + 15551/10 sin(t + 1/9) + 518 sin(3 t + 1/5) + 679/17 sin(5 t + 2/5) + 259/6 sin(7 t + 5/6) - 9484/7) θ(39 π - t) θ(t - 35 π) + (-130/7 sin(9/8 - 4 t) - 427/4 sin(24/25 - 3 t) - 3332/3 sin(9/7 - t) + 932/19 sin(2 t + 30/7) - 32269/6) θ(35 π - t) θ(t - 31 π) + (-1119/13 sin(10/9 - 3 t) - 1386/17 sin(4/3 - 2 t) - 4103/4 sin(9/7 - t) - 46877/9) θ(31 π - t) θ(t - 27 π) + (-7485/4 sin(5/9 - t) + 1909/9 sin(2 t + 34/9) + 2861/4 sin(3 t + 23/5) + 11/2 sin(4 t + 7/2) + 111/8 sin(5 t + 12/7) + 511/8 sin(6 t + 16/15) + 180/7 sin(7 t + 11/4) + 279/4 sin(8 t + 17/5) + 76/5 sin(9 t + 81/20) - 16919/11) θ(27 π - t) θ(t - 23 π) + (-71/13 sin(1/2 - 11 t) - 119/6 sin(17/16 - 6 t) - 292/7 sin(10/7 - 5 t) - 64/13 sin(3/5 - 3 t) - 1493/3 sin(2/7 - t) + 1883/8 sin(2 t + 7/6) + 171/7 sin(4 t + 32/9) + 251/25 sin(7 t + 1) + 35/2 sin(8 t + 16/7) + 117/10 sin(9 t + 15/4) + 43/9 sin(10 t + 29/8) + 43/9 sin(12 t + 20/13) - 65269/8) θ(23 π - t) θ(t - 19 π) + (-174/5 sin(4/7 - 8 t) - 4532/23 sin(5/6 - 6 t) + 36005/17 sin(t + 25/9) + 2164/5 sin(2 t + 35/9) + 1376/5 sin(3 t + 13/7) + 1164/5 sin(4 t + 28/9) + 277/3 sin(5 t + 19/5) + 539/4 sin(7 t + 3/10) + 839/12 sin(9 t + 26/9) + 23/5 sin(10 t + 8/3) + 901/22 sin(11 t + 11/5) + 163/5 sin(12 t + 5/9) + 135/7 sin(13 t + 9/2) - 11569/2) θ(19 π - t) θ(t - 15 π) + (-5801/5 sin(5/11 - t) + 171/7 sin(2 t + 21/5) + 782/9 sin(3 t + 17/4) - 7576/5) θ(15 π - t) θ(t - 11 π) + (-34/3 sin(1 - 4 t) - 838/7 sin(1/2 - 2 t) + 7788/7 sin(t + 2/5) + 1055/7 sin(3 t + 11/7) + 219/10 sin(5 t + 19/5) + 194/7 sin(6 t + 49/11) - 7441/5) θ(11 π - t) θ(t - 7 π) + (-209/2 sin(5/6 - 8 t) + 58085/14 sin(t + 21/8) + 5813/3 sin(2 t + 26/7) + 25709/7 sin(3 t + 10/7) + 6831/8 sin(4 t + 9/4) + 3693/10 sin(5 t + 38/13) + 6453/7 sin(6 t + 30/7) + 1996/11 sin(7 t + 16/5) + 3541/22 sin(9 t + 5/4) + 2263/29 sin(10 t + 35/18) + 4279/46 sin(11 t + 1/5) + 523/4 sin(12 t + 21/5) + 326/7 sin(13 t + 21/8) + 396/7 sin(14 t + 21/5) + 1446/17 sin(15 t + 2/3) + 1971/5) θ(7 π - t) θ(t - 3 π) + (-938/5 sin(8/9 - 7 t) + 26701/4 sin(t + 18/7) + 8911/33 sin(2 t + 7/2) + 4615/6 sin(3 t + 32/7) + 18102/23 sin(4 t + 12/5) + 1129/7 sin(5 t + 13/4) + 473/7 sin(6 t + 10/7) + 671/7 sin(8 t + 1/14) + 7/4 sin(9 t + 9/2) + 491/9 sin(10 t + 29/14) - 19490/3) θ(3 π - t) θ(t + π)) θ(sqrt(sgn(sin(t/2))))
3dZd2ETkwrSycrJKy0TIDsR3eA_cSJHqAWEvDxcX3VZJopCpi197EsahfcbZz8V4nZQlWR89F0xX4hbdEBzgXxto44iM_DiSdBXrQfUYwGw_PrnrpCNYgZobgqaRSWtOdiZuP94ZxJpbwiLA4uRLXzCKXObytqwkpP2X7px9PCa9aqfpFfXLbB9sqZ48mDZ1U1Og6XGMQCsGqd8Lk_1rw8DD_HHtKFK093mYh434BgzfUMR8eJph5LFAVwbvjsi1YzmqMrFAdqxLlumOT8F1OXi14lCA3Cs363hTasfCLmuMakbvZ_gixCiVdvsyFWeR128VJ_5jzbk0dwotX3jplPKnImoCqoMpClSa9fVJg88gGbEX6Sb4gyXrRARiCi4g0TLzDu_DFbdtgY06ohENUOAJfAbWmu0plz0bg1T0WRfjAcrZffHHmt5P_HDy0gMYUQJM4dPdwkdfelWsq4pT70lHNrsZ6y7piD2RSahMVugou4QParG1vN993zVbkrXjX60UMIwJlkyQAEYJyXAb2lLvSJ7d64YKHL9iBBtY4c_Zq2dNV8Z946yY_KlLBugUSE5YTX2V1vbjmvwc_LO2TEYJQPil_RKUXJdyJCyuHZichKdzIUjNJ5Abqih81gNP1AU7nBf9EaZsnaFsaKrR4uojXMc0gEHRGJQShy2lCE0xA6TzQYBuuo8Q3jKnPkJ6fNpf8Ris5Kd1a89lVAgB7gw7ZaWrcoIPgNVm6T6gw9peS_tkG3DJJnE6sIhd1Q3jYh17hmZ2TMHhyzk5VIO89kKXLOgs7HLuoMggIG7wtHu8POiaG0b4falbwfduDHPfG5vqMowczMFDeROBsO8gGMTj22SRnOYQvm8ev6nSn5W737L5TQAORalJdWztgMZW_k2P8_R6VHG2WRArbO5MsFcbyEAQYZxZEacNqx30ALL3zJtTqwRhw2gkXh97pAeD0KXqgexd8IfEqZHboZhKLazIuzGYiaRRB5GYgkSEuXFCPEDXuzVyFU3kRgo9FgXc
CWznMlqLN0ET0BkJKDt3cbOO0_bE8Gbe7Q3brttZqEpK1bxmB1B9fOGQjIYL9oRU1PHV_ET_pBff4ysLY0KVt5WLYSLJ8nAue2gSaiY3MoTtrESRJXl2XuSpGAjQmaObUY2LP4SSG5WCA5nFrDzASlqUfHlvLzYKaDyWCu2bYYbA1f1y7vIQYqvn4_RpqtWs7m_IeycuS91rVBbTN1z6NalrE7yMexpuzF0zFGZ4sVAUsGq8CVAnJLqfT3vUrNOTHb_4D4d8skJG1kJ12q6PP3yGjQ9ishMgU0Lt42vUCWTEEejcg9tCtGTl9NT0K0FilpFz_LPXlF_VIebRgSbfJpymqOCpk0OuRyfKY77gBJrqcAGkceN_4mVhYWd1h5YlORWbPh8j0kTlLQXetZwCXrApglPNvGl2xVvmOJtBnmslGur8gcp36pdEqL3APBsePOZFUor9xbAiNTngwbq0G888rxaLd5gxJJWfzi_04ImnLB0XvbdStP4jftmpPjHNctpcW8q0sTBeQ94zfo7MwSgPPgfxyySIWv4YZbmxcgdewQhbrVxMwTYgE4V1fbkCCkTE9FWEluosVAQzFUREwUK6zLcmhK8qty4ck6KcaAQu2YMFOO9wCrZt4z5scrlgU27izi8rmTgD835GFgnDCWaFn7oCPkLYkI3SMaVliTEZnXDQw8Rj0jobAvGXXZS4ATEVPcaCcMAWsUB4TsLJIL7Y0uKiBpsRSmzXAOW6XdmIapJTAqAdJKJklKguaSpWzvvknrYPsS9xTp9cbxWEf2zZ8X86Bj__s5JUpAEDJij1wFychyO3dEvHFftmLrpgfJnkTmzJYvGw3KEk0aDyyubfA5p6r2fwfLEfoD3vvB_W_W8FE9vYL4_CFb3Dnc078UiuA5Y4uQjIaY321V3Z2VDGxQbmCYxTjvXyBFYuHOjTrt2jPhiagByDkmNZOeRmGO6AbQl9XxMm3ozUysLJNQ5HblfYFA_OxPEngW45AlcJikMeAYrh8DspZa9BIqJr
oM9IhLF48lENzhDfaJqrVNAwTHtrBotSK6nou9rx3s5ePGKWwvtsOTHVcI7MYsvtGJReGkXpxwb_MDOrj1GxII744JO2mXv63svQ8O_RL4RO_hEZxYdJf8GmXVPF5vepmPW5FyMkm3vg7AjPJvJrucdxi2HmJMZaDbxymrkxz3t5b1LbvFUJXwLDGajkF_mNfGY9z0vNZhR5WPAEXqyLMFDiZIC56wZYCjIyXarky36w5G2qZDpChV593Uyhu67jnPCJ6vlOhLPVmrIjspVWgRgNrNpenSFa3LOtC7fOaHvnl0dpSiI743nVT9KFdV0ocQOF0ykqWgF4jqP00Ig62ylJ3v2Kup1beBNAfKZvCPTd06yIttdShY_szdgIk3Qe1nKzRBMjXB5D4xf33L_1U53l_gd0oGBCx1gejqGtNtQo0v3l6DMhh2BoEIZ_8mebioJJQxQFbmlTb3wwrx4K08HT95adlclPQbSTv7T0bnptsGc46F2OQHnY22SpJejsAX41vka1v9shoZmIiqhKc1WU568J91uuHP6LducCuJ2nO7Qv1EosVlPwjURS2FHre45OkgdiWvskGFr0WgpMoDIOe9NVqfBkTlh4zrE3RWOCy7pNGtZEnfQIeuI_JQQlkshQG1fvZtwRjwOgAaPY_bA4U9Rj98_u3SBcsWJ49yB6q46AkFc9jrA2rWeH75MvxY9Sl25ZadX3sxZXeG0ehuaMVUwGqdPvh1Q3xrsp9zS6dXB9bNyKMXLOGPL7_7w6GNvJaFiPcoKhKii8ZR2Bl2l2jHXncuLzmeqgYFPwtBfcLIgyoWOf3z0Sf7EeJ5l2PhHJmhiQFLgQM9icVRt_sb7P9sCAMWBgnqFz6NWwY76nZAtmxWAWJhs6Kr2CjKezBMAS8cqvXPpNvGwDYEv_LRhIBoF3tFnjafR9Nvav9Yl70OEIL12jhS5ZgKEId4ekKZjpIj54BptcfIFwojcUele6qYrojUCeWZOsf6FI0htCy4_BQ8Uy0JKVh9fGziS0
rcnDBMpsi2EIiUpXt54Y4A0u5h8s58h9VcCNOJsNUmQLshoNLNwcoBKG17vLXiUIQckHZBR7tnoWbvxHO4j6NS91w7jp8FEXSI2AS9LtaOAcnlkwUVnfIQfAODmchmNatBLQHzM4vNgkfP5OjckgFwzWLNeSGPJcVya3iJHo8sqSDp3US2vlCTG_IpnpT0MEyX5OfriRfW8hjxDr_I9h3BV2Zj_rrfg8nS74yvlHyWMo_EyOM5VqOBcCuR0mLB9oshIKkIEGF6ZFaneupxdVSM8bOgPq87PK4fkDRQ9GNdRLdeeNzuTnG6adGcCq5CSEqTUHoHSigStN1UXcTbqSsFYEPtIdkEcnvdTpdDFA2ycgNIUbHP5vqmp2Y_zv_g8axyrMXNnHBh0OGHwp16rWUhAh5E4ojhXi11_zaUnYi2iY7Ra_Fop8R7zr9pvRo6DjeBM2b1JEZDjHvk2m9IIx_OLKhqaltugNEv3xke9XXLPjTjgNtbj2NUSSfeH7DxMyxK7Zl4IdKS7PG7h0A9diOged_1uXoiwHwMerYS9V5OvCuLRQ0I76CKe1GkMONGSrp24yRmHDrWg8YVvRjJuQgf9q_RCJGTWRF4_U42GloDEXBUwi6AeNXxaUYHXodmDE04B45JlxuoeMecnqX6xx0IXnpDiipzkPfRxJ1ihFMP69fVuqfnOKkVcRLkmMbJnOCspLtY0MgSE85kL7_tZLuf7Iq0NUwc4mP3kslzzTUotqec28kkGbALUApK3V6xO5ja0gtsQUj7ATi91tQxyXNYAV45_6h4znTP6dcVw7STecMaLk9BAbDnPy_p9w5S8zCd_G4dV68_UWZ0wK6iwUc6fzUP3NKD5Iuk6205N2TCBvuCJpUBpHzqqaSbOr1wAvx6eu6HNaH_TadhWQy2i2hSZ6XycVzBrMahKVixZSGRHW0DxQKXdzvgsmkTF4UkHkJTM9cnJyjA6_ZAmICOg689ibRvZwZbopWMwp_N80bKmTyleV5leAEUkaKYW5a3d9
lcizW14RZ9DgcsU_K7hUS_LbVR3lwblT6YEiisaIm6sdnzrXIKRk19yUxfbTvw6SQAliyNbAB8HKe3c4Z02htxj15hfK6AesGGUfEW3QEMrHJNuu5ScEDhBUcIowLdqby1oaKngxoK2GutTnTycKDaV5cCgeHjHIrujIWKFQ_Bp06RXnnTZL3tie6Jcv88SlumHAWzRbGnG3UC5FMfD96CXzkCjxPBpbMxyAfMSHeyKAbB56sr4aItLBYuyFn8DEDKCyCKVhrengIKeezRoXRrJsA9cagE6D406JvJgv0PPe7F5T_zbKwQP1FyrK53bAqs_enfuvHC0XFaoEw9CE1yyQ_wUN0mHR0eLl8ZpL0IMFiMthNUDR0qBjtBH5KlwfL6fS_Y7YEtu_pg9oyiCO8wIZdxGAUR5sGxQlS6DuEoabweUlHoUB9G1hSyyFkFSwUITScehZHNTwUFZO2ePc5_zoSlP2JuWDk5tgJHhmSy4MoLtbtvwsIPf4jlmnSWJ7fDsLACR5MHYaW1DYGXVpE42lKdekJMyWWRjHV2sjZ_GT_aqoHQX0R2REBkiM68hWDLfUKGEAgTOqrxKGoM8qPwI0VP7AhsuZJXW2PUSwgOcwaJw8Ux11__ehX_MrJgJVoZmz_d2PgRCHSYBAD5r8F65ywmKlgIguxSP_1ddgHER5qQ6J8mIjEKY83ABUmy2XU_3qIjxE1NefS0Py2EaGwnUKnu65SAqXlw3J8GwHykJDrayiFNqkHbbqOpbEk9kBRSuEVieJ3f5G7MBHusrneGjkiq0BV0zgyO945riVKD84gkaKFo1uf9tYDbeVaQVBEs3o16VN_kUQZ_tA_QnBX2j9aRxqcnR0Qxt_oB_w6MOBPH1cA4RdIuupprFQMGkbGYGSrfSIV0kAZmUwVn85YvJgz5lkog_YQS3fbOi4oGa21yurlu6T15r2e5SEGivAUUfPoicJglbm8dS589HgPymefTNrylHJYMltOvq2auPMShdZmGfJCoIygLZcS_wV