2022-12-25

anond:20221225015505

いや尤度の事象は変わらんって話。事前確率1って尤度の値そのまま更新するってだけの話だし。

いや、尤度は条件にHを入れてるからHに依存する。で、俺が思ったのがP(H)=1ならH=UだからP(D|H)P(H)=P(D)になるって話。

その計算だとP(H)=0のときゼロ除算出てこないか

これはどう処理するかよくわからんかったので調べ中。

  • 結論に異論ない(同じ状態のベイズ更新は収束する)けどP(H)=1の後の計算合ってるか?

    • P(H)=1のときH∩D=Dと思ったんだけど違う? P(H)=1→H=Uだと思うんだけど。

      • 尤度は関係ないやろ?

        • 尤度が関係あるかどうか知らんが、エントロピー最小(P(H)=1 or 0)のときにはベイズ更新されないということを、ベイズの定理に代入しただけだぞ。

          • いや尤度の事象は変わらんって話。事前確率1って尤度の値そのまま更新するってだけの話だし。 その計算だとP(H)=0のときゼロ除算出てこないか?

            • > いや尤度の事象は変わらんって話。事前確率1って尤度の値そのまま更新するってだけの話だし。 いや、尤度は条件にHを入れてるからHに依存する。で、俺が思ったのがP(H)=1ならH=Uだ...

              • P(D)=sum_H(P(D|H) P(H) )から導出されてるなら問題ない

                • お前がどの計算に混乱してるのかわからんが、定理に単に代入すればそうなるだろ。 俺と同じこと言ってるのがあるからそれ引用するわ。 Once the prior probability is 0 or 1, applying Bayes Theorem...

                  • 結論でなく途中がおかしいと言ってる

                    • どこが?P(H)=1 or 0をベイズの定理に代入するだけだぞ。

                      • 同時確率からいきなり周辺尤度は出ない。それは周辺尤度の式から展開されて導出される式よ

                        • なんというか、証明方法って幾通りかあると思うんだけど、P(H)=1 or 0の特殊なケースで適当な項がきれいに消えてくれるだけなので、そのあたりわかってる?

                          • 証明方法は幾通りあっても尤度の事象は変わらんよ。事前確率1のときは周辺尤度がその尤度のみになるから1になる

                            • 尤度の事象、という話は多分どうでもよく、俺がやってるのは「代入した、式変形した、証明できた」それだけ

                              • 尤度の事象は変わると言い出したのはあなた

                                • すまん、日本語であれこれ言っても何も証明にならないから、お前の証明式を書いてくれ。

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん