2011-02-02

http://anond.hatelabo.jp/20110202222607

俺が馬鹿でわかってない気がするけど、

の濃度が等しいという理屈わからん

前者をΩ、後者をXとかすると、X→Ωの単射でない写像があっても良い気がする。

あーいやごめんやっぱ俺が間違ってたわ。

記事への反応 -
  • 円周=2πr、だから、円周が3の円って、単に、r=3/2πの円じゃないの?2次元平面の普通の円で考えたら、面積9/4πで、どう考えても可測じゃん?なんで可測性が関係あるの?

    • あらゆる円を集めた集合上で定義される適当な測度について、という意味で書いた。 適当に円を描いたらその円の円周が代数的数である確率が0かどうかという意味。

      • >あらゆる円を集めた集合上で定義される適当な測度について、という意味で書いた。 適当に円を描いたらその円の円周が代数的数である確率が0かどうかという意味。 なるほど。円周=...

        • 俺もそう思ったけど、やっぱ 超越数に2πをかけて代数的数になる場合が連続体濃度もあるとは考えられず ここが怪しい気がして可測かどうかはわからんとしたんだよね。 超越数に掛...

          • 正の超越数xを用いて2πxの形で書ける代数的な数っていうのは、全ての代数的な数のうちの特殊な場合だから、 正の実数上の全ての代数的数の集合⊇正の超越数xを用いて2πxの形で書け...

            • 俺が馬鹿でわかってない気がするけど、 正の超越数xを用いて2πxの形で書ける代数的数の集合 と 2πxが代数的数となる正の超越数xの集合 の濃度が等しいという理屈がわからん。 前...

              • あーなるほど。 f(r) = 2πr (r>0) は、超越数とか代数的数とかの区別を考えなければ、f:R_+→R_+でfは全単射だよね。単なる線形変換だから。あと、x∈R_+は、超越数か代数的数のどちらか...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん