2021-08-08

anond:20210808194056

まず、ℚ(√2 + √3) = ℚ(√2)(√3)であることを示す。

ℚ(√2 + √3)⊂ℚ(√2)(√3)は明らか。

逆の包含を示すため、ℚと√2 + √3から有限回の四則演算で√2, √3を作れることを示す。

1/(√2 + √3) = √3 - √2より、√3 - √2∈ℚ(√2 + √3)。

よって、√3 = ((√3 + √2) + (√3 - √2))/2∈ℚ(√2 + √3)、√2 = ((√3 + √2) - (√3 - √2))/2∈ℚ(√2 + √3)。

よって、ℚ(√2 + √3)⊃ℚ(√2)(√3)。

ℚ(√2)/ℚとℚ(√3)/ℚはともにℚのGalois拡大であり、それぞれ√2, √3のℚ上の共役をすべて含むから、ℚ(√2)(√3)も√2, √3のℚ上の共役をすべて含む。

したがって、ℚ(√2)(√3)/ℚはGalois拡大である

写像φ: Gal(ℚ(√2)(√3)/ℚ)→Gal(ℚ(√2)/ℚ) × Gal(ℚ(√3)/ℚ)を

φ(σ) = (σ|ℚ(√2), σ|ℚ(√3))

で定めると、これは群準同型になる。

ℚ(√2)(√3)はℚ(√2)とℚ(√3)で生成されるから、σ|ℚ(√2)とσ|ℚ(√3)がともに恒等写像になるのは、ℚ(√2)(√3)の恒等写像である。したがって、φは単射である

また、Galois拡大の推進定理より

[ℚ(√2)(√3):ℚ] = [ℚ(√2)(√3):ℚ(√2)][ℚ(√2):ℚ] =[ℚ(√3):ℚ][ℚ(√2):ℚ]

∴ |Gal(ℚ(√2)(√3)/ℚ)| = |Gal(ℚ(√3)/ℚ) × Gal(ℚ(√2)/ℚ)|

よって、φは同型である

Gal(ℚ(√2)/ℚ) ≃ Gal(ℚ(√3)/ℚ) ≃ ℤ/2ℤだから

Gal(ℚ(√2 + √3)/ℚ) ≃ ℤ/2ℤ × ℤ/2ℤ

である

記事への反応 -
  • ℚ(√2 + √3)/ℚがGalois拡大であることを示し、そのGalois群を求めよ。

    • まず、ℚ(√2 + √3) = ℚ(√2)(√3)であることを示す。 ℚ(√2 + √3)⊂ℚ(√2)(√3)は明らか。 逆の包含を示すため、ℚと√2 + √3から有限回の四則演算で√2, √3を作れることを示す。 1/(√2 +...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん