y=x^3とy^3=xとの交点をP,Qとするとき、PとQで切り取られた面積を求めることは高校数学範囲内でできるか?
二次関数y=ax^2と有理関数x=by^2で切り取られる面積なら、俺の持ってる旧いチャート式に問題があるよ。 答えは1/3abで、a=b=1なら、ちょうど交点は(1,1)で、面積1/3。 これ、地味におもし...
2 * \int_0^1 x^{1/3} - x^3 dx = 1じゃねーの?
つ 参考 高等学校数学II 微分・積分の考え http://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6II_%E5%BE%AE%E5%88%86%E3%83%BB%E7%A9%8D%E5%88%86%E3%81%AE%E8%80%83%E3%81%88 a) この問題は 3次方...
y^3+x=1ってできるのかな、高校生。 有理関数は習うからどんな形になるかは推測できそうだけど。
いや・・・普通に y^3=xのy軸周りの面積と y=x^3のx軸周りの面積は同じ だから 図形を90度回転させれば良いだけだろ。 幾何の知識で解ける。xについてとくから...