2018-01-01

anond:20180101101138

つの素数をそれぞれx,yと置き、(x ≦ y)とする。

x2 + y2 = 2018 (x ≦ y,xは素数,yは素数)

と表すことができる。

ここでyをxに置き換えると、

x2 + x2 ≦ 2018

2x2 ≦ 2018

x2 ≦ 1009

√1009 = 31.765より、

x ≦ 31

xは素数なので、(2,3,5,7,11,13,17,19,23,29,31)のいずれか。

i) x = 2 の場合

22 + y2 = 2018

y2 = 2014

yが素数にならないので不適

ii) x = 3の場合

32 + y2 = 2018

y2 = 2009

yが素数にならないので不適

iii) x = 5の場合

52 + y2 = 2018

y2 = 1993

yが素数にならないので不適

iv) x = 7の場合

72 + y2 = 2018

y2 = 1969

yが素数にならないので不適

v) x = 11場合

112 + y2 = 2018

y2 = 1897

yが素数にならないので不適

vi) x = 13の場合

132 + y2 = 2018

y2 = 1849

y = 43

力が尽きました。

以上より(x, y) = (13, 43)

記事への反応 -
  • 早速ですが問題です。 [レベル1] 連続する4つの整数の和が2018のとき、これらの整数を求めよ。 [レベル2] 連続するn(>4)個の整数の和が2018のとき、nをすべて求めよ。 [レベル1]は中学2年...

    • 2018年は2つの素数の2乗の和で表すことができます。その2つの素数を求めなさい。

      • 二つの整数をそれぞれx,yと置き、(x ≦ y)とする。 x2 + y2 = 2018 (x ≦ y,xは素数,yは素数) と表すことができる。 ここでyをxに置き換えると、 x2 + x2 ≦ 2018 2x2 ≦ 2018 x2 ≦ 1009 √1009 = 31.765より、...

      • require 'prime'def calc3(a, b) (a*a + b*b) == ANSenddef main3 for a in 1..50 for b in 1..50 if Prime.prime?(a) and Prime.prime?(b) and calc3(a, b) puts "#{a}*#{a} + #{b}*#{b}" end end endendmain3

    • 連続するかどうかは関係ないn(>1)個の素数の和が2018のとき、nをすべて求めよ。

      • 1999 + 19

      • ANS = 2018def init_prime(max) pr = [] for n in 2..max pr.push(n) if Prime.prime?(n) end prenddef calc6(prs, n) prs.combination(n) {|arr| if arr.inject {|res, ar| res + ar} == ANS puts arr return true end } return falseenddef main6 prs = init_pr...

      • 異なるn(>1)個の素数の和が2018のとき、nをすべて求めよ。 nの最大値を考える。 n=34の時、異なる素数の和の最小値は、 2+3+5+7+....+139 = 2127 となり、2018を超えてしまう。 よって、n は最...

        • 2018未満の素数の数は、全部で306個ありますので、 そこから、例えば33個の素数を選ぶ場合、 205,454,361,245,692,057,383,929,236,130,775,774,760,597,950 種類の組合せになります。 組み合わせが多すぎ...

        • 異なるn(>1)個の素数の和が2018のとき、nをすべて求めよ。 nの取り得る最大値が33なので、n=33での組合せが実在するのか調べた。 (2+3+5+7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97...

      • 4日になったので解答を投下します。 連続するかどうかは関係ない異なるn(>1)個の素数の和が2018のとき、nをすべて求めよ。 全ての組合せを計算してしまえば求まる(anond:20180101185837)...

    • 連続するn個の整数の二乗の和が2018のとき、これらの整数を求めよ。

      • ANS = 2018#

      • この問題 > 連続するn個の整数の二乗の和が2018のとき、これらの整数を求めよ。 に解が実際に存在するのはかなり驚き。 以下ネタバレにつき改行。 ここから-- 2乗の...

    • 2□0□1□8=10 □に四則演算記号を入れて等号を成立させなさい。

    • ANS = 2018def calc(a) a+a+1+a+2+a+3enddef main i = 1 until (ans = calc(i)) == ANS i += 1 end puts "#{i}+#{i+1}+#{i+2}+#{i+3}=#{ANS}"endmain

    • [レベル1] 連続する4つの整数をそれぞれ、m,(m+1),(m+2),(m+3)と置く。 和が2018になるので、 m + (m + 1) + (m + 2) + (m + 3) = 2018 4m + 6 = 2018 4m = 2012 m = 503 よって、連続する4つの整数は、503,504,505,506 [...

    • 今朝数学の問題を投稿したものです。すごい反応だ。 皆さんありがとうございます。そして既に完全な正解が出ています。

      • 1/3になりましたけど、 連続するかどうかは関係ない異なるn(>1)個の素数の和が2018のとき、nをすべて求めよ。 の回答も書きましょうかね? まだ、考えている人が居たらもう少し待ち...

    • ある程度検索してみても今年の数は例年に比べて盛り上がりに欠けますね。 専門家的にはあんま面白くないというか、扱いにくい数なんでしょうかね。

      • 1009の2倍と知った時点で、つまらない数字だと直感した。

        • 確かに素数を2倍しただけ、と考えると不毛な印象ですね。

    • 3日になったので解答を投下します。 ・連続する4個の整数の和が2018 最も小さい数をxとして、 x+(x+1)+(x+2)+(x+3)=2018 4x+6=2018 4x=2012 x=503 なので、503,504,505,506。 ・連続するn個の整数の和が2018 ...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん