「TSUNAMI」を含む日記 RSS

はてなキーワード: TSUNAMIとは

2018-10-03

anond:20181003105936

tsunamiやkotatsuみたいなもんならyomeでいいじゃんよ

2018-09-20

anond:20180920173233

サザンTSUNAMIを歌わないのは自主規制(と言うか本人が歌う気になれない)だな

2018-09-15

曲と歌詞は不可分

ネット上の歌詞論評など見てると、歌詞は曲とは独立した要素として論じられてるモノが散見される。

でも、歌詞と曲は不可分なモノだ。

めちゃめちゃ分かりやすい例で言えば、

こ「なーーー」ゆき(粉雪)

見つめ「あーーー」うと(TSUNAMI)

「だーーー」れも触れない(ロビンソン)

のように、音を伸ばす部分で“a”の音を当てたりする。

スピッツの「チェリー」という曲のサビは、「あ↑いしてる↓」という本来言葉アクセントメロディガッチリ合っている。

他にもミスチルの「名もなき詩」のサビ「あ↑るがまま↑」など、この言葉のチョイスが気持ちのいい響きを生み出していることに気づく。

他にも、コードメロディの流れと、歌詞中の物語が連動していたり…「曲」という制限がある中で言葉をチョイスしていき、曲の持つ力を何倍にも膨らませるのが歌詞役割だと私は思う。

例が偏ってしまったが、作曲者作詞者でなければならないと言いたいわけではない。

作詞専業でも凄い人はいる。たとえば「チャラヘッチャラ」とか専業の人じゃないと出てこない歌詞だと思う。

ただ、作詞というのは文学的感性技術に加えて音楽的な感性必要とされる仕事であることは間違いない。

ちなみに歌詞に対して曲をつけるという作業に関しては私は全く知識がないのでそこを突っ込まれると弱い。

昔は普通に行われていたらしいが。「木綿のハンカチーフ」などは代表例だが、その楽曲としての完成度の高さには驚嘆せざるをえない。

https://anond.hatelabo.jp/20180915133312

2018-06-24

ワンルームの罪深さについて

ワンルーム放送中止については東日本大震災の直後に『のぼうの城』の放送を中止にしたり、サザンが『TSUNAMI』を自粛したりするようなもんでまあそうなるだろうなという感想だったが、

放送中止に対する意見があまりにも自分と違うものが多かったので個人的意見

事件を想起させるとか被害者へのバッシングの部分とは別に

他の犯罪小説映画は叩かれないのに、なぜワンルームは叩かれるのか。

放送中止賛成派の主流の意見が「犯罪者の誘拐される側もそれを望んでいたというファンタジー肯定している」という誘拐犯側の願望が投影されてるからよくない、というものが多かったが

ワンルームヒロイン幸が「男にとって魅力的な女子中学生か」というと全くもって違うように思う。

自殺をほのめかしたり、中二病ポエムを垂れ流す、誘拐された被害者という立場を利用して強気にでているような描写もしばしばあり。

それに対してすごいのがお兄さんの反応で、

自殺願望やらポエムをきいたお兄さんは「彼女自分人生を終わらせる決意のある立派な人間」「14歳とは思えない大人の考え」と称賛。

これってまさに女版俺TUEEEEEEEEEE女子中学生の願望の投影だろ、っていう。

自殺願望だのポエムだのむしろ14歳のやりがちな中二病だろー

お兄さんは誘拐に対し後ろめたさをもち、幸のために料理を作り、幸の提案に従い新しい名前をつけたり、幸の髪を洗い甲斐甲斐しく尽くす。

そして幸が風呂場で裸になり髪を洗わせようが、手は決してださない。

幸の人格尊敬し、それに比べて俺は・・・とひたすら卑下

こんな性欲の抜け落ちたような都合のいいイケメンいるか

幸に萌えた!っていう人がいたらどの部分が?と逆に感想を聞きたい。

あのキャラ萌える男って俺TUEEEEEEEEEEEEEEのラノベ主人公萌える女並みに希少だと思うんだが。

これをみたリアル中二病発病中の中学生女子が「親も学校もみんなクソ!幸色ワンルームのお兄さんのようなイケメンが世の中のどこかにはいるかもしれない。」と夢見てしまう子もいるかもしれない。

ワンルームに対して拒否反応を起こす人(女性が主?)が多いのは、中学生女子自分内面理解尊敬してくれるイケメンがほしいという願望を理解できて、

そして世の中はこんなに都合はよくないということも知っているから、影響される中学生女子がでることを恐れてるからじゃないかなあと想像してたんだが、

ブコメや他の記事やらみたらまるで違う意見ばかりで驚いたのでかいてみた。

これを「犯罪者の誘拐される側もそれを望んでいたというファンタジー肯定している」っていうのオタクカルチャーから遠い人の感想

朝霞事件とは別に「これに影響される女子中学生いるかもしれない」とか「これで女子の願望を学んだ犯罪者がお兄さんを演じるかもしれない」っていう意見ならまあわかるよ。

朝霞事件とは経緯も内容も全く違うが、座間事件犯人ツイッターアイコンイケメン風のイラスト首吊り士とかいう中二臭いアカウント名にしたり、若い女性のひきつける中二感を利用してたしなあ。

2018-02-03

2018年から見た2001年

2000年からすると1983年

TSUNAMIを聞いてハリポタ読んでる若者

おしんを見たことないなんて信じらない」とか言う感じか。

ファミコンの発売年とプレステ2の発売年。

2017-06-17

規制の謎

クジラックス問題があーだこーだ言われているがそれより理解できないのは被害者配慮しての規制

首切り事件が起こったあとは首切りシーンがある映画放送中止にしたりするアレね。

確かに被害者感情をあえて刺激する必要はないけど、ただのテレビ番組の1つだからね。

自分が見たくない、聞きたくないものなんておかまいなしに世間は動いてるって当たり前のことだと思うけど。

ちなみにサザン3.11以降「TSUNAMI」を歌えなくなってしまったらしい。ネットソースなので真偽はしらんがちょっとこの状況異常じゃないか

2014-04-21

生徒と教師、それぞれの音楽・娯楽が重なるとき-例えばボカロとか

卒業式で桜ノ雨」「お昼の放送でボカロ禁止」といった話題がネットに上がってから3年~5年、

ニコニコ動画におけるVOCALOID初期作品の『みくみくにしてあげる』や『メルトからおよそ6年半。

青春音楽ボカロって層はまだ学生だろうけど、大学くらいでボカロに触れて楽しんだ人が教職に進んでクラス担任を受け持っていることはありえると思う。


すると生徒とくだけた話もするタイプの教師なら、ボカロ好きな生徒との会話を試みて

先生学生のころは〇〇Pを聴いてたんだよー」「そんなP知らなーい」「えっ」

といったシチュエーションがあるかもしれない。


でも私が中学校の頃はどんなに若い教師でも、私たち(のものと思っている)の娯楽にすり寄られるとウザいと感じた。

しろ私たちけがその娯楽の面白さを知ってればいいとさえ思っていたから、

冒頭で挙げたネタで出てきた「自分の好きなものを否定されて辛い」って感情

否定してくる相手が同級生なら共感できるけど、教師だとできない。


86年生まれの私だと99-01年度が中学の3年間。

モーニング娘。・嵐・浜崎あゆみ宇多田ヒカルaiko椎名林檎・19・ポルノグラフィティDragon AshBUMP OF CHICKEN私たちのもので、教師が入ってくるのを拒んでた。

二宮くん可愛いよねー」より「私の1番は今でもかーくんなの!」という女性教師の方が誠実そうに見えた。

吹奏楽部定期演奏会で『ザ☆ピ〜ス!』を下級生のダンス付きで披露したとき、飛び入りでダンスに参加した副顧問男性教師にはかなり白けた。


一方で自身の思い入れのある曲・歌手・娯楽を紹介できる教師は、ちゃんと青春を謳歌して大人になったんだなと好印象だった。

その教師の思い入れ私たち世界が重なったこともある。


TSUNAMI』、『波乗りジョニー』の大ヒットで当時40代の教師たちがサザンオールスターズ桑田佳祐を熱く語った。おかげで男子に『マンピーのG★SPOT』が大流行した。

ドラマ人にやさしく』でTHE BLUE HEARTSを知った子も多かった。体育教師は持久走の授業で『リンダリンダ』『TRAIN-TRAIN』をBGMに流して生徒が関心を示すと、どこか満足気だった。


一番印象に残ってるのは卒業式とは別にあった、教師のくだけた訓話と生徒の出し物がメインのお別れ会

男子生徒のバンド演奏で2人の男性クラス担任ボーカルの子と並んで歌った、スピッツチェリー』。

桜坂』は大ヒットしてたけど、後発の桜ソングはまだなくて桜ソング卒業ソングというイメージもまだなかった時代

それでも春と旅立ちのイメージで選ばれたんだと思う。



チェリー』のCDリリースは96年。私たちは小4で、大流行してたJ-POPを主にテレビからどんどん吸収していた。

歌った先生たちは教員になったかならないか、でも『青い車』『ロビンソン』なら学生だった世代


男子生徒たちは普段Dragon Ashを体をくねらせながらコピーしていたせいか『チェリー』だとかっこつけきれず、はにかむような顔を見せた。

先生たちは学生のころの気持ちに戻ったと言いながら、ノリノリで歌い終わったあと赤面してた。

お互いの照れがとても印象的だった。

これがスピッツではなく19だったら、あるいは尾崎豊だったら、生徒と教師が一緒につくった思い出としては今の私に強く残らなかったと思う。



私たち先生でつくったスピッツ、今の中学生のそれがボカロだったら面白いかもしれないと思った経緯でした。

2013-11-11

アルファブクマカーbelievemeimaliarさんのブコメまとめ

believemeimaliarさんは流行ってるマンガが大嫌い。

はてなブックマーク - あずまきよひこ.com » Blog Archive » よつばとアニメ

あずまきよひこ死なねえかな

はてなブックマーク - 孤独のグルメ掲載店が「もう来るな」 “アームロック店”から悲鳴 | もぐもぐニュース

こんなゴミマンガ面白がってるゴミクズを全員ハンバーグの原料にするくらいしか解決法はないな

はてなブックマーク - 羽海野チカという人は「漫画家が恐れる漫画家」らしい。ゴッチかボックか、ヒョードルかフリーザか… - 見えない道場本舗

漫画家の内輪受け仲間褒め話くらい気色悪いものはないな。こいつら全員中卒のくせに

はてなブックマーク - 朝日新聞デジタル:巨人、快進撃 アニメ化で1000万部増 - カルチャー

ついに人々が頭の良いフリをすることすらやめてしまった2013年象徴するようなヒット作

believemeimaliarさんは山本太郎が大好き。

はてなブックマーク - 山本氏が猪木氏と共闘も「この国を良くしたいという思いは一緒」 | 東スポWeb – 東京スポーツ新聞社

顔真っ赤にして死票を投じた連中のことを思うとこのふたりを応援した自分を本当に誇らしく思う

はてなブックマーク - 山本太郎さんの天皇陛下への直訴状騒動(山本 一郎) - 個人 - Yahoo!ニュース

そろそろ皆さんにも気がついてほしかったのですけど合法的に世の中を悪くしたいのなら選挙でそういうのに適した人に投票するのがもっと安全かつ効果的ですよ

believemeimaliarさんはロリコン

はてなブックマーク - 『少女の私を愛したあなた』あなたはどう読む?性的虐待のひとつの実態、少女だった著者の手記:Book News

文章だけでは味気ないので挿絵を……

believemeimaliarさんはエッチ

はてなブックマーク - ソウル新市庁舎の「津波」デザインに関するメモ(ハム速、アルファルファなどの検証) - Togetter

慰安婦呼んで揉んで抱いてGスポットを指で触ってTSUNAMIのようにいい気持ち


その他のbelievemeimaliarさんのブコメチョイス

はてなブックマーク - 保健所の人の声「この命 灰になるためだけに生まれてきたわけじゃない」:ハムスター速報

やっぱり自分の手で殺すのが飼育醍醐味から

はてなブックマーク - 擬人化軍艦を戦わせるオンラインゲーム「艦これ」で自虐史観が矯正される、と期待している人がいる - 法華狼の日記

艦隊これくしょんがどういうものかを調べれば調べるほどに石鹸工場建設人間狩りの合法化を急がなければとわたしは思うのだが

はてなブックマーク - キャストが役と同化していた「魔法少女まどか☆マギカ[新編]」舞台挨拶に魔法少女役の5人が登壇 - GIGAZINE

ブサイクなおばさんがセル画美少女に見えるようになるまで鍛錬を怠ってはならない

はてなブックマーク - みんなの『とにかく誰かに紹介したくて堪らないアイマス動画』 その10(たぶん最終回):そんなことよりアイマスの話をしようぜ - ブロマガ

記事タイトルブログ名を読んだだけでアイドルマスターのことが戦争と同じくらい嫌いになった


あと店長引退関連のエントリ自分で書いたブログ記事のリンク貼りまくってるんだけどセルクマしかされてなくてウケます

よっぽど読んでほしかったんでしょうね。

はてなの大人気ブロガー・コンビニ店長MK2さんの言論に対する不当な圧力を絶対に許すな - 人生はゲームだ THE GAME

2011-04-09

人災天災

日赤義捐金原発による避難地域にも配られることへの反発が出ているという。

義援金がどう使われたか説明を求められたときに、何割かがTEPCO補償に行ったと説明したら、十中八九は返せと言われるだろ。義援金配分に政府が介入してこうした結果になったなら、僕は二度と民主党には投票しないだろう。イェールだけで4万ドル近い義援金集めたし、これからも増える予定なのに 約17時間webから

赤十字を経由する義援金を集める活動を行ってきた立場からすると、事実上東電への補助金」に化けてしま義援金配分のやり方はサギだな。放射能汚染は人災だし、汚染者補償原則を完徹すべきだろう。何バカなことやっているんだ。 約17時間webから

junsaito0529(斉藤淳「奥羽越復興同盟」を呟く政治学者、エール大助教授。元衆議院議員、元平岡塾講師山形県酒田市生。)

私も海外義捐金を集めてきた。しかしその街頭で人々から受けた応援や心配からすると、原発の避難地域に送られたということに反発する人は十中八九いない。実際、多くの人は原発の状況を心配し、そして東電に対して怒っていた。あと個人的には私自身は、原発の避難地域親友がいたからこそ、本業を放り出して、街頭に立ち続けたし、チャリティーイベントも企画に加わった。もしもこれで集めた分がまったく避難地域に行かないのだとしたら、私が集めた分を返してもらいたい。そんなばかげたことは本当は言いたくないし、こんなtweetを見るまでは、すべての被災地のためにと思ってやってきたのだけど。

イェール大学募金団体には福島県はまったく関わってなかったのか?斉藤先生自身が司会を務めた、募金のためのシンポジウムは"Symposium – Earthquake, Tsunami, and Nuclear Crisis: Analyzing Disaster in Japan"というタイトルだった。このシンポジウム募金した人々はNuclear crisisのために募金してないという扱いなのか?

もちろん斉藤先生は「TEPCO補償に行った」などといったら反発するだろうと言ってるわけだ。でも、今は単に原発の問題による避難も全壊と同じ額で義捐金の配分を付けるといってるだけで、そもそもそれを「TEPCO補償に行った」と読む時点で斜め読みすぎるだろう。少なくとも今は、誰もそれで東電による補償見積もりを減らすなんて言ってない。(なんで日赤がそんなことを決められるの?たとえば浜通りへの義捐金も同じような文句を付けるの?)たしかに今ここで日赤から現金供給されることで、放っておいたら栄養失調するはずの人たちが助かり、その分だけ結果的には東電補償するべき金額は減るだろう。それは本来的な意味モラルハザードを招く。けれどもそのモラルハザードを防ぐために、彼らを放っておくのか?モラルハザードを防ぐというのは、厚生を高めるための手段にしか過ぎないのに。

そもそも東電が直接現金を配り始めるまで、福島の避難民は放っておけということ?

もうひとつ杓子将棋だなと思ったのが、

>全壊とみなすのなら、津波流失家屋と同様、超法規的に滅失登記をすべきです。 

@keyaki1117 笹山登生(ウォッチ・アナライザー。元衆議院議員ですが今は政治政策以外色んなことに口出してます最近シカゴオプション売買戦略マニュアルhttp://bit.ly/es0jVM を書き上げましたプロトレーダーに好評。)

ただ単に同額というだけだし、そもそもなぜ政府でもない日赤の分配額が同じというだけで、物理的になくなってもない家をたった35万円で失わなければいけないんだ?

それに、もしも放射能リスクがなくなって物理的に住めるようになったら、それはそれで避難民にとっては幸いなことで、祝うべきことでしょう。

いまの35万円は当座の避難費用ということだろうに。避難民など体育館とか公の避難所で十分というのならまだしも、まずは他所の土地に行ってアパート探して早く落ち着きたいところだし、実際そうしている。そうなったら他所の土地仕事が見つかるかわからいから、ある程度の支度金はいるだろうさ。そして、その支度金は全壊住宅だろうが避難地域だろうが変わらない。

斉藤先生個人のことを言えば、このtweetと平行して、やたら相馬の野間追がなくなることに同情している。けれども野間追がなくなるのは、津波のせいよりも放射能リスクのせいのほうが大きい。(津波小高や原町の海岸沿いはやられてるけど、その津波だけなら規模を多少縮小すれども開催できたはず。復興の意気をあげるためにも。)もしも相双を同情するのなら、避難地域日赤義捐金をやるなというだけでなく、避難してる住民たちがましな生活を送るための支援を日赤に頼らず自分たちでもしようという一言があってもいいんじゃないか。それがなぜ、東電をこらしめるために、避難民には金やるなというだけになってしまうのか。(「奥羽越復興同盟」が会津を見捨てた「列藩同盟」のもじりで、今度は相馬中村藩を見捨てるという意味じゃないことを願う。)

2011-03-28

サザンオールスターズ

TSUNAMIっていう曲があったなぁ。

有線でリクエストするような人いるかなぁ?

2011-03-14

福島原子力発電所CNNコメント欄 MIT科学者見解2【東日本巨大地震

When the diesel generators were gone, the reactor operators switched to emergency battery power. The batteries were designed as one of the backups to the backups, to provide power for cooling the core for 8 hours. And they did.

Within the 8 hours, another power source had to be found and connected to the power plant. The power grid was down due to the earthquake. The diesel generators were destroyed by the tsunami. So mobile diesel generators were trucked in.

This is where things started to go seriously wrong. The external power generators could not be connected to the power plant (the plugs did not fit). So after the batteries ran out, the residual heat could not be carried away any more.

At this point the plant operators begin to follow emergency procedures that are in place for a “loss of cooling event”. It is again a step along the “Depth of Defense” lines. The power to the cooling systems should never have failed completely, but it did, so they “retreat” to the next line of defense. All of this, however shocking it seems to us, is part of the day-to-day training you go through as an operator, right through to managing a core meltdown.

It was at this stage that people started to talk about core meltdown. Because at the end of the day, if cooling cannot be restored, the core will eventually melt (after hours or days), and the last line of defense, the core catcher and third containment, would come into play.

But the goal at this stage was to manage the core while it was heating up, and ensure that the first containment (the Zircaloy tubes that contains the nuclear fuel), as well as the second containment (our pressure cooker) remain intact and operational for as long as possible, to give the engineers time to fix the cooling systems.

Because cooling the core is such a big deal, the reactor has a number of cooling systems, each in multiple versions (the reactor water cleanup system, the decay heat removal, the reactor core isolating cooling, the standby liquid cooling system, and the emergency core cooling system). Which one failed when or did not fail is not clear at this point in time.

So imagine our pressure cooker on the stove, heat on low, but on. The operators use whatever cooling system capacity they have to get rid of as much heat as possible, but the pressure starts building up. The priority now is to maintain integrity of the first containment (keep temperature of the fuel rods below 2200°C), as well as the second containment, the pressure cooker. In order to maintain integrity of the pressure cooker (the second containment), the pressure has to be released from time to time. Because the ability to do that in an emergency is so important, the reactor has 11 pressure release valves. The operators now started venting steam from time to time to control the pressure. The temperature at this stage was about 550°C.

This is when the reports about “radiation leakage” starting coming in. I believe I explained above why venting the steam is theoretically the same as releasing radiation into the environment, but why it was and is not dangerous. The radioactive nitrogen as well as the noble gases do not pose a threat to human health.

At some stage during this venting, the explosion occurred. The explosion took place outside of the third containment (our “last line of defense”), and the reactor building. Remember that the reactor building has no function in keeping the radioactivity contained. It is not entirely clear yet what has happened, but this is the likely scenario: The operators decided to vent the steam from the pressure vessel not directly into the environment, but into the space between the third containment and the reactor building (to give the radioactivity in the steam more time to subside). The problem is that at the high temperatures that the core had reached at this stage, water molecules can “disassociate” into oxygen and hydrogen – an explosive mixture. And it did explode, outside the third containment, damaging the reactor building around. It was that sort of explosion, but inside the pressure vessel (because it was badly designed and not managed properly by the operators) that lead to the explosion of Chernobyl. This was never a risk at Fukushima. The problem of hydrogen-oxygen formation is one of the biggies when you design a power plant (if you are not Soviet, that is), so the reactor is build and operated in a way it cannot happen inside the containment. It happened outside, which was not intended but a possible scenario and OK, because it did not pose a risk for the containment.

So the pressure was under control, as steam was vented. Now, if you keep boiling your pot, the problem is that the water level will keep falling and falling. The core is covered by several meters of water in order to allow for some time to pass (hours, days) before it gets exposed. Once the rods start to be exposed at the top, the exposed parts will reach the critical temperature of 2200 °C after about 45 minutes. This is when the first containment, the Zircaloy tube, would fail.

And this started to happen. The cooling could not be restored before there was some (very limited, but still) damage to the casing of some of the fuel. The nuclear material itself was still intact, but the surrounding Zircaloy shell had started melting. What happened now is that some of the byproducts of the uranium decay – radioactive Cesium and Iodine – started to mix with the steam. The big problem, uranium, was still under control, because the uranium oxide rods were good until 3000 °C. It is confirmed that a very small amount of Cesium and Iodine was measured in the steam that was released into the atmosphere.

It seems this was the “go signal” for a major plan B. The small amounts of Cesium that were measured told the operators that the first containment on one of the rods somewhere was about to give. The Plan A had been to restore one of the regular cooling systems to the core. Why that failed is unclear. One plausible explanation is that the tsunami also took away / polluted all the clean water needed for the regular cooling systems.

The water used in the cooling system is very clean, demineralized (like distilled) water. The reason to use pure water is the above mentioned activation by the neutrons from the Uranium: Pure water does not get activated much, so stays practically radioactive-free. Dirt or salt in the water will absorb the neutrons quicker, becoming more radioactive. This has no effect whatsoever on the core – it does not care what it is cooled by. But it makes life more difficult for the operators and mechanics when they have to deal with activated (i.e. slightly radioactive) water.

But Plan A had failed – cooling systems down or additional clean water unavailable – so Plan B came into effect. This is what it looks like happened:

In order to prevent a core meltdown, the operators started to use sea water to cool the core. I am not quite sure if they flooded our pressure cooker with it (the second containment), or if they flooded the third containment, immersing the pressure cooker. But that is not relevant for us.

The point is that the nuclear fuel has now been cooled down. Because the chain reaction has been stopped a long time ago, there is only very little residual heat being produced now. The large amount of cooling water that has been used is sufficient to take up that heat. Because it is a lot of water, the core does not produce sufficient heat any more to produce any significant pressure. Also, boric acid has been added to the seawater. Boric acid is “liquid control rod”. Whatever decay is still going on, the Boron will capture the neutrons and further speed up the cooling down of the core.

The plant came close to a core meltdown. Here is the worst-case scenario that was avoided: If the seawater could not have been used for treatment, the operators would have continued to vent the water steam to avoid pressure buildup. The third containment would then have been completely sealed to allow the core meltdown to happen without releasing radioactive material. After the meltdown, there would have been a waiting period for the intermediate radioactive materials to decay inside the reactor, and all radioactive particles to settle on a surface inside the containment. The cooling system would have been restored eventually, and the molten core cooled to a manageable temperature. The containment would have been cleaned up on the inside. Then a messy job of removing the molten core from the containment would have begun, packing the (now solid again) fuel bit by bit into transportation containers to be shipped to processing plants. Depending on the damage, the block of the plant would then either be repaired or dismantled.

Now, where does that leave us?

・The plant is safe now and will stay safe.

Japan is looking at an INES Level 4 Accident: Nuclear accident with local consequences. That is bad for the company that owns the plant, but not for anyone else.

・Some radiation was released when the pressure vessel was vented. All radioactive isotopes from the activated steam have gone (decayed). A very small amount of Cesium was released, as well as Iodine. If you were sitting on top of the plants’ chimney when they were venting, you should probably give up smoking to return to your former life expectancy. The Cesium and Iodine isotopes were carried out to the sea and will never be seen again.

・There was some limited damage to the first containment. That means that some amounts of radioactive Cesium and Iodine will also be released into the cooling water, but no Uranium or other nasty stuff (the Uranium oxide does not “dissolve” in the water). There are facilities for treating the cooling water inside the third containment. The radioactive Cesium and Iodine will be removed there and eventually stored as radioactive waste in terminal storage.

・The seawater used as cooling water will be activated to some degree. Because the control rods are fully inserted, the Uranium chain reaction is not happening. That means the “main” nuclear reaction is not happening, thus not contributing to the activation. The intermediate radioactive materials (Cesium and Iodine) are also almost gone at this stage, because the Uranium decay was stopped a long time ago. This further reduces the activation. The bottom line is that there will be some low level of activation of the seawater, which will also be removed by the treatment facilities.

・The seawater will then be replaced over time with the “normal” cooling water

・The reactor core will then be dismantled and transported to a processing facility, just like during a regular fuel change.

Fuel rods and the entire plant will be checked for potential damage. This will take about 4-5 years.

・The safety systems on all Japanese plants will be upgraded to withstand a 9.0 earthquake and tsunami (or worse)

・I believe the most significant problem will be a prolonged power shortage. About half of Japan’s nuclear reactors will probably have to be inspected, reducing the nation’s power generating capacity by 15%. This will probably be covered by running gas power plants that are usually only used for peak loads to cover some of the base load as well. That will increase your electricity bill, as well as lead to potential power shortages during peak demand, in Japan.

If you want to stay informed, please forget the usual media outlets and consult the following websites:

http://www.world-nuclear-news.org/RS_Battle_to_stabilise_earthquake_reactors_1203111.html

http://bravenewclimate.com/2011/03/12/japan-nuclear-earthquake/

http://ansnuclearcafe.org/2011/03/11/media-updates-on-nuclear-power-stations-in-japan/

福島原子力発電所CNNコメント欄 MIT科学者科学者見解1【東日本巨大地震

結論:大丈夫

MvK2010

I'm going to copy paste a full blog post of a research scientist at MIT here, who explains the situation at Fukushima much better than anyone else has, his message: no worries.

This post is by Dr Josef Oehmen, a research scientist at MIT, in Boston.

He is a PhD Scientist, whose father has extensive experience in Germany’s nuclear industry. I asked him to write this information to my family in Australia, who were being made sick with worry by the media reports coming from Japan. I am republishing it with his permission.

It is a few hours old, so if any information is out of date, blame me for the delay in getting it published.

This is his text in full and unedited. It is very long, so get comfy.

I am writing this text (Mar 12) to give you some peace of mind regarding some of the troubles in Japan, that is the safety of Japan’s nuclear reactors. Up front, the situation is serious, but under control. And this text is long! But you will know more about nuclear power plants after reading it than all journalists on this planet put together.

There was and will *not* be any significant release of radioactivity.

By “significant” I mean a level of radiation of more than what you would receive on – say – a long distance flight, or drinking a glass of beer that comes from certain areas with high levels of natural background radiation.

I have been reading every news release on the incident since the earthquake. There has not been one single (!) report that was accurate and free of errors (and part of that problem is also a weakness in the Japanese crisis communication). By “not free of errors” I do not refer to tendentious anti-nuclear journalism – that is quite normal these days. By “not free of errors” I mean blatant errors regarding physics and natural law, as well as gross misinterpretation of facts, due to an obvious lack of fundamental and basic understanding of the way nuclear reactors are build and operated. I have read a 3 page report on CNN where every single paragraph contained an error.

We will have to cover some fundamentals, before we get into what is going on.

Construction of the Fukushima nuclear power plants

The plants at Fukushima are so called Boiling Water Reactors, or BWR for short. Boiling Water Reactors are similar to a pressure cooker. The nuclear fuel heats water, the water boils and creates steam, the steam then drives turbines that create the electricity, and the steam is then cooled and condensed back to water, and the water send back to be heated by the nuclear fuel. The pressure cooker operates at about 250 °C.

The nuclear fuel is uranium oxide. Uranium oxide is a ceramic with a very high melting point of about 3000 °C. The fuel is manufactured in pellets (think little cylinders the size of Lego bricks). Those pieces are then put into a long tube made of Zircaloy with a melting point of 2200 °C, and sealed tight. The assembly is called a fuel rod. These fuel rods are then put together to form larger packages, and a number of these packages are then put into the reactor. All these packages together are referred to as “the core”.

The Zircaloy casing is the first containment. It separates the radioactive fuel from the rest of the world.

The core is then placed in the “pressure vessels”. That is the pressure cooker we talked about before. The pressure vessels is the second containment. This is one sturdy piece of a pot, designed to safely contain the core for temperatures several hundred °C. That covers the scenarios where cooling can be restored at some point.

The entire “hardware” of the nuclear reactor – the pressure vessel and all pipes, pumps, coolant (water) reserves, are then encased in the third containment. The third containment is a hermetically (air tight) sealed, very thick bubble of the strongest steel. The third containment is designed, built and tested for one single purpose: To contain, indefinitely, a complete core meltdown. For that purpose, a large and thick concrete basin is cast under the pressure vessel (the second containment), which is filled with graphite, all inside the third containment. This is the so-called “core catcher”. If the core melts and the pressure vessel bursts (and eventually melts), it will catch the molten fuel and everything else. It is built in such a way that the nuclear fuel will be spread out, so it can cool down.

This third containment is then surrounded by the reactor building. The reactor building is an outer shell that is supposed to keep the weather out, but nothing in. (this is the part that was damaged in the explosion, but more to that later).

Fundamentals of nuclear reactions

The uranium fuel generates heat by nuclear fission. Big uranium atoms are split into smaller atoms. That generates heat plus neutrons (one of the particles that forms an atom). When the neutron hits another uranium atom, that splits, generating more neutrons and so on. That is called the nuclear chain reaction.

Now, just packing a lot of fuel rods next to each other would quickly lead to overheating and after about 45 minutes to a melting of the fuel rods. It is worth mentioning at this point that the nuclear fuel in a reactor can *never* cause a nuclear explosion the type of a nuclear bomb. Building a nuclear bomb is actually quite difficult (ask Iran). In Chernobyl, the explosion was caused by excessive pressure buildup, hydrogen explosion and rupture of all containments, propelling molten core material into the environment (a “dirty bomb”). Why that did not and will not happen in Japan, further below.

In order to control the nuclear chain reaction, the reactor operators use so-called “moderator rods”. The moderator rods absorb the neutrons and kill the chain reaction instantaneously. A nuclear reactor is built in such a way, that when operating normally, you take out all the moderator rods. The coolant water then takes away the heat (and converts it into steam and electricity) at the same rate as the core produces it. And you have a lot of leeway around the standard operating point of 250°C.

The challenge is that after inserting the rods and stopping the chain reaction, the core still keeps producing heat. The uranium “stopped” the chain reaction. But a number of intermediate radioactive elements are created by the uranium during its fission process, most notably Cesium and Iodine isotopes, i.e. radioactive versions of these elements that will eventually split up into smaller atoms and not be radioactive anymore. Those elements keep decaying and producing heat. Because they are not regenerated any longer from the uranium (the uranium stopped decaying after the moderator rods were put in), they get less and less, and so the core cools down over a matter of days, until those intermediate radioactive elements are used up.

This residual heat is causing the headaches right now.

So the first “type” of radioactive material is the uranium in the fuel rods, plus the intermediate radioactive elements that the uranium splits into, also inside the fuel rod (Cesium and Iodine).

There is a second type of radioactive material created, outside the fuel rods. The big main difference up front: Those radioactive materials have a very short half-life, that means that they decay very fast and split into non-radioactive materials. By fast I mean seconds. So if these radioactive materials are released into the environment, yes, radioactivity was released, but no, it is not dangerous, at all. Why? By the time you spelled “R-A-D-I-O-N-U-C-L-I-D-E”, they will be harmless, because they will have split up into non radioactive elements. Those radioactive elements are N-16, the radioactive isotope (or version) of nitrogen (air). The others are noble gases such as Xenon. But where do they come from? When the uranium splits, it generates a neutron (see above). Most of these neutrons will hit other uranium atoms and keep the nuclear chain reaction going. But some will leave the fuel rod and hit the water molecules, or the air that is in the water. Then, a non-radioactive element can “capture” the neutron. It becomes radioactive. As described above, it will quickly (seconds) get rid again of the neutron to return to its former beautiful self.

This second “type” of radiation is very important when we talk about the radioactivity being released into the environment later on.

What happened at Fukushima

I will try to summarize the main facts. The earthquake that hit Japan was 7 times more powerful than the worst earthquake the nuclear power plant was built for (the Richter scale works logarithmically; the difference between the 8.2 that the plants were built for and the 8.9 that happened is 7 times, not 0.7). So the first hooray for Japanese engineering, everything held up.

When the earthquake hit with 8.9, the nuclear reactors all went into automatic shutdown. Within seconds after the earthquake started, the moderator rods had been inserted into the core and nuclear chain reaction of the uranium stopped. Now, the cooling system has to carry away the residual heat. The residual heat load is about 3% of the heat load under normal operating conditions.

The earthquake destroyed the external power supply of the nuclear reactor. That is one of the most serious accidents for a nuclear power plant, and accordingly, a “plant black out” receives a lot of attention when designing backup systems. The power is needed to keep the coolant pumps working. Since the power plant had been shut down, it cannot produce any electricity by itself any more.

Things were going well for an hour. One set of multiple sets of emergency Diesel power generators kicked in and provided the electricity that was needed. Then the Tsunami came, much bigger than people had expected when building the power plant (see above, factor 7). The tsunami took out all multiple sets of backup Diesel generators.

When designing a nuclear power plant, engineers follow a philosophy called “Defense of Depth”. That means that you first build everything to withstand the worst catastrophe you can imagine, and then design the plant in such a way that it can still handle one system failure (that you thought could never happen) after the other. A tsunami taking out all backup power in one swift strike is such a scenario. The last line of defense is putting everything into the third containment (see above), that will keep everything, whatever the mess, moderator rods in our out, core molten or not, inside the reactor.

http://anond.hatelabo.jp/20110314030613

へ続く

2011-03-12

youtube地震

YouTube - 地震 千葉県北西部自宅の様子 2011年3月11日 東北地方太平洋沖地震

http://www.youtube.com/watch?v=871E8_DJ-rw

YouTube - 3月11日地震 越谷レイクタウン

http://www.youtube.com/watch?v=LjfXbx2UFsY

YouTube - 2011/3/11 東北地方太平洋地震(宮城県沖地震)の東京都中野区の揺れ

http://www.youtube.com/watch?v=oQVPfQu50yY

YouTube - 2011/3/11 Earthquake in Japan 地震 震度5強 埼玉県久喜市その1

http://www.youtube.com/watch?v=CBRDmor_nkM

YouTube - 東北地方太平洋沖地震 石油コンビナート爆発の瞬間

http://www.youtube.com/watch?v=SRUpJ3CAcYA

YouTube - 地震によるコスモ石油千葉製油所の爆発(2011年3月11日)

http://www.youtube.com/watch?v=2wzZq1j8Xo0

YouTube - コスモ石油燃料タンク爆発の瞬間(3月11日地震

http://www.youtube.com/watch?v=uc7kIKI6baM

YouTube - 2011年 3月11日 東北地方太平洋沖地震 福島県会津若松市 Earthquake

http://www.youtube.com/watch?v=3pkSKHPoEUs

YouTube - 東北地方太平洋沖地震 M8.8 2011/3/11 茨城県牛久市 ibaraki japan Earthquake

http://www.youtube.com/watch?v=gDRx8Wmty-4

YouTube - #odawara 地震後の様子 #tsunami alart2011.3.11

http://www.youtube.com/watch?v=EkG8-E2soQU

YouTube - 東北太平洋地震M8.8 発生の様子(首都圏にて)

http://www.youtube.com/watch?v=HwbUJs787jM

YouTube - 【HD】2011.3.11(Fri)14:46大地震 茨城県取手市山王にて earthquake occurred in Japan

http://www.youtube.com/watch?v=qizfq0xZabM

2011年3月11日 東北地方太平洋沖地震 発生時

http://www.youtube.com/watch?v=j3fUqdGXLbM

YouTube - 千葉県地震情報 高校生の家 ゲオの状況It is a large earthquake in Japan. PDS

http://www.youtube.com/watch?v=Gm35h7bKD7s

YouTube - 東京地震3月11日揺れる瞬間を撮影 Earthquake in Tokyo Japan

http://www.youtube.com/watch?v=51bQrT30Mtk

YouTube - 【3/11】  東京地震の戦慄の映像 【14:46】

http://www.youtube.com/watch?v=FUeuoydQEnA

YouTube - 東北地方太平洋沖地震 緊急地震速報地震発生

http://www.youtube.com/watch?v=epanWKVRAK8

YouTube - Terremoto japon / 日本地震/ escenas impactantes 日本地震衝撃的なシーン

http://www.youtube.com/watch?v=Eot-Ndzo2tM

YouTube - 東北地方太平洋沖地震 緊急地震速報地震発生

http://www.youtube.com/watch?v=epanWKVRAK8

YouTube - 3月11日 東北地方太平洋沖地震

http://www.youtube.com/watch?v=E9AMFEPiu-E

YouTube - 東北関東大地震。揺れる新宿高層ビル 2011年3月11日

http://www.youtube.com/watch?v=JhJzdtzl6KY

YouTube - ■東北太平洋沿岸地震 液状化や噴砂の様子その6(千葉県浦安市

http://www.youtube.com/watch?v=VSl_RodfWaI

地震日本の厳格な建築基準が命を救った。【The New York Times

The New York Times に 日本からこそ、この被害で済んでるみたいな記事があったので意訳。

Japan’s Strict Building Codes Saved Lives」

http://www.nytimes.com/2011/03/12/world/asia/12codes.html

日本では、海岸線沿いの防波堤から揺れることで地震の衝撃を吸収する超高層ビルまでが、世界で最も厳しい建築基準法によって建造されており、日本ほど地震に耐えうるよう準備されている国はない。

日本以外の国が、金曜日日本を襲ったM8.9の地震に見舞われたとすれば現時点で死者は数万人となっていただろう。しかし、(後々増加するのは確実とはいえ)日本での死者は数百人である


長年にわたり日本は数十億ドルを費やし、地震津波に対する最先端技術を開発してきた。

2004年インド洋大津波において海岸付近に居残ったことで多くの犠牲者がでた東南アジアとは異なり、定期的に地震津波がおこる日本では定期的な訓練によって、日本人地震津波への対処法を心得ている。


日本海岸線に沿ったエリア、特に過去津波被害に遭ったことのある地域では、より最善の地震津波に対する準備がなされる。地元当局は通常、各家庭に設置された緊急システムを通じて直接連絡を取ることができるし、主要な高台へ通じる避難ルートは明確になっているのだ。


日本は「tsunami」という単語世界に広める程の国であり、1980年代から1990年代にかけては多くの地域で約40フィート(約12メートル)のコンクリート製の防波堤を作った。

加えて、沿岸部の町ではセンサーによるネットワークが構築され、全ての住居でアラームが鳴るようになっており、地震の際には自動水門が閉まり、川を遡る波を防止する。港にも大抵の場合(避難用の)高台が準備されている。


しかしながら批評家は、防波堤は目障りで環境にも悪いという。彼らによれば、防波堤は誤った安心感を沿岸住民に植えつけ、定期的な訓練への参加を疎かにさせてしまう。また、住民から海が見えなくなる為、人々が波のパターンを観察できず、海を理解する能力が低下してしまうというのだ。


NHKによれば金曜日津波は、いくつかの防波堤を乗り越えたという。しかし、今すぐには分からないが、防波堤か定期的な訓練、もしくはその2つの両方があったことで、人々は高台に非難でき、死傷者数を抑えられたのだ。

しかし、今日は徐々に被害が明らかになって、ホント悠長なこと言ってられなくなる気がする。

本当に被災地の皆さん頑張って!

2010-03-04

Twitter問題点構造的に考える

140字制限からURLを除き、返信時にコメント元を表示して、コメント元からも返信があることが分かるようになれば、大半の問題は解決しそう。

ほかに問題があったらブクマか、@youkosekiコメント下さい。

追記

3/25:ふぁぼ死やアカウント融合、APIや運営まわりの問題を追記しました。ブクマTwitterでのご指摘ありがとうございました。問題があるからダメではなく、現状の問題を認識しつつ、どういう風にすればより便利になるか考えたいと思っています。以前にお仕事Twitterについてのコラムを書いたので、お時間のある方はどうぞ。http://www.mri.co.jp/NEWS/column/thinking/2010/2015508_1805.html

2008-09-15

Bloody Sunday: Wall Street Is Hit by Financial Tsunami

リーマン(サラリーマンのことじゃないよ!)の現状

http://www.cnbc.com/id/26709718

本国リーマンで働いている労働者絶望

http://www.cnbc.com/id/26644096/site/14081545/

Hany Besha, who operates a coffee truck outside Lehman's headquarters in New York, said: "One of my customers told me, 'I don't know if I will see you tomorrow or not."'


しかしまぁ金融は本当にファットテールというか、マンデルブロの言うところの「ワイルドな不確実性」に支配されてるな。

ログイン ユーザー登録
ようこそ ゲスト さん