「微分」を含む日記 RSS

はてなキーワード: 微分とは

2020-06-30

導関数計算するまでに100ページ以上もイプシロンデルタしてる数学書なんか読めるかよ

こういう教科書を書いたり、他人に薦めたりしてる連中の自己満足は、本当に目に余る。

商売相手がついこないだまで高校生であったということに想像が行っていない。

そして、どう見ても大して頭の良さそうじゃない連中が、得意げな顔して「厳密性こそが数学正統性だ」みたいなことを言っている。

そういう連中ほど、一生微分積分教科書だけ読んでて、「解析概論は多変数微分積分議論曖昧」とかそんな話しかしてない。

で、数学ができる連中は微分積分なんかさっさと済ませて、より進んだ数学をやっている。

2020-06-29

IUT理論宇宙タイミューラー理論ブームに沸く人たち

まず断っておくと、この投稿には望月教授およびその関係者貶める意図は全くない。また、「IUT理論が間違っている」と言っているわけでもない。この投稿の主旨は「IUT理論ブーム」の現象本質を明らかにすることである

ブームの異常性

まずIUT理論は決して数学特に整数論、数論幾何)の主要なブランチではない。「論文を読もう」というレベルの関心がある数学者でさえ全世界に数十人しかおらず、自称理解している」のは望月氏とその一派だけ、そして理解した上でさら理論を発展させようとしている研究者は恐らく数人しかいない。

もちろん、これは数学研究分野として珍しいことではないし、研究者の数が少ないと研究の「格」が下がるなどということもない。しかし、abc予想解決したというインパクトに比べれば、これはあまりにも小規模な影響でしかない。そういうものに、一般人も含めて熱狂しているのは、異常と言える。

繰り返しになるが、これはIUT理論のもの、および望月氏とその関係者貶める意図はない。

内容を理解せずに、単語に反応する人たち

数学科の学部生や、数学の非専門家で「IUT理論勉強したい」などと言っている人も多い。それは大いに結構なことである。どんどんチャレンジすればいいと思う。

しかし、専門的な数学を学ぶ際には、たとえば「可換代数複素解析が好きなので代数幾何研究したい」とか「関数解析が好きなので偏微分方程式作用素環論研究したい」というように、既存知識経験を手がかりにして専攻を決めるものではないだろうか。IUT理論に興味がある非専門家には、そういう具体的な動機があるのか。単に「話題キーワード」に反応しているだけじゃないのか。

IUT理論の具体的な内容に関心を持つには、望月氏の過去の一連の研究に通じている必要がある。そうでない人がIUT理論の「解説」などを読んでも、得られる情報

だけだろう。これに意味があるだろうか。そのような理解で「何か」が腑に落ちたとしても、それはその人にも、数学界にも何ら好影響を与えないだろう。

IUT理論よりも他に知るべきことがあるんじゃないか

こんなことを言うと、「専門的な数学を学ぶには、その前提となる知識を完全に知っていなければいけないのか」と思われるかも知れないが、もちろんそんなことはない。時には思い切りも必要である

しかし、望月氏本人が述べているように、IUT理論既存数学知識類推理解できる数学者は、自身を除いてこの世にいない。これは数論幾何専門家を含めての話である。数論幾何専門家は、一般人から見れば雲の上の存在である。そういう人たちでもゼロから勉強し直さなければ読めないのである一般人がIUT理論の分かりやす解説を求めるのは、1桁の数の足し算が分からない幼稚園児が微分積分の分かりやす解説を求めるのの1000倍くらいのギャップがあると言っても誇張ではない。要するに、難しすぎるのである

一方、数学界には既存数学伝統を多く汲んでいて、最新の数学にも大きな影響を及ぼしているような理論は数多くある。それらは、学部4年生や大学院生セミナーで扱われたり、全学部向けの開講科目で解説されたりしている。数学を知りたい、または普及させたいと思うならば、そういうものを扱う方が適切ではないだろうか。

「IUT理論ブーム」が示すもの

「IUT理論ブーム」が示すのは要するに、ほとんどの人間はある事実説明した文章なり理論なりの本質的な内容に興味がない、ということだ。

彼らは、書いてある事実関係を論理的に読み解くよりも、抽象的な内容を脳内自由解釈することを好む。むしろ理解できないからこそ、何か高尚なことが書いてあると思って有難がったり、満足感を得たりする。

この構造疑似科学新興宗教と同じなのである(IUT理論疑似科学だと言っているのではない)。彼らはあくまでも自分の中で腑に落ちる雑学知識を求めているだけであって、数学理解したいわけではない。そして、こういう人向けに数学科学知識を「布教」しても、社会への貢献にはならないと思う。

2020-06-25

そえんになっている

まり

嫌われている親族了解をとったか

本人に毒気入りsたら

離婚した

きちがいというか、さすがテレビ局はあたまおかしいですね

こんなもん邪ろに行ってって

さすがテレビ局はあたまおかしいですね核ミサイルを落としても

ドッキリだからおっけー

包丁でさしても ほうちょうって ちんこのことだよ って あとでいえば

おっけー

そりゃはがねだけどな1度も握手会に来ない おんがえしがしたい

あたまおかし

1度も握手会に来ない ふつうは嫌われていると思う

さすが 

きちがい

そんなにんげんに2ねんもなにかされりゃ

こっちがきちがいになってしにいたる15年嫌われ抜かれえいているって思わない

裏民家れているって思わない

あたまがおかし

たかっておもう

おれにとってはころしや

はやくおまえがしねよっておもっちゃう

たか こういうふうにかかなきゃいけないってことでさとれない

げいのうじんだからへいき てれびだからへいき

自民党から 自粛をお願いしても平気

自粛なんかお願いして ドッキリでした いえるわけがないのとおなじ

解決するには おれがしねばいい

おれがしねばかいけつする

からたすけてくれ

あいてにはおれをころすりゆうがあって1億以上 かかってる

許可を得ないで なにかした 10人以上で からかった

よくある 普通は 学校閉鎖級の事故が起きる みんなですみませんとあやまりにいった

学校閉鎖が確定すると思わない

そんな先生に育てられた そりゃ

子供には」カウンセリングがいる 被害者には もう人生は戻らない でも 地域もそうだった

見ず知らずの人間に 無許可で なんかしても ドッキリなら大丈夫 そういう地域だった ごめんなさい

しってたら ひっこさなかった

お金いから でていけないだけ

前回は すぐに引っ越しの準備をして 1年以内に 出ていった

 

済むことが溺愛 ひきこもり とか 自分たちが 自分たち価値観で 定義したら それを理由に かかわっていい 

頭の構造おかしくて なにか 血管があるんじゃないかと思う

お国のためだから 許可を得ないで 大切なものを かってに もっていっていい

そんなもんだろう

事前に 許可なんかいらないって どうしておしえたの?

教えたくないんだ? 何を?何を教えてくれっていわなきゃ 教えようもない

前も言われた

微分積分を しらないひとに 部分積分を教えてくれ

そのあとにいわれた

教えてくれないなんて けち 一言で教えてくれると思ってた

 

おれからすると 知らないのはしょうが無いと思うけど 普通10年かかる せめて1-2年

なんで 一言で教えてくれなきゃ 教えてもらえないって思うんだろう

10年かかるって思わない なめられてたってことは 教わった

2020-06-22

一方はふつう数学文章。もう片方は全くデタラメ文章である

一方は正しい数学文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。

もう一方は完全に出鱈目な文章である数学的に何の意味もない支離滅裂ものである

文章1

本稿を通して、kは代数閉体とする。

k上の射影直線ℙ^1から射影平面ℙ^2への射

i: [x: y] → [x^2: xy: y^2]

を考える。iの像は、ℙ^2の閉部分スキーム

Proj(k[X, Y, Z]/(Y^2 - XZ))

と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。

与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要問題である。以下、可逆層と射影空間への射の関係について述べる。

定義:

Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである

Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが

f: x → [s_0(x): ...: s_d(x)]

により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。

定義:

Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである

例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)| np + (f)≧0}を考える。Riemann-Rochの定理より、

dim(O_{E}(np)) - dim(O_{E}(K - np)) = deg(np) + 1 - g = n

∴ dim(O_{E}(np)) = n + dim(O_{E}(K - np))

であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K - np)<0であり、よってdim(O_{E}(K - np))=0。

∴ dim(O_{E}(np)) = n

n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。

この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合次元の高い射影空間に埋め込める。

定義:

Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプであるという。

与えられた可逆層がアンプであるか判定するのは、一般的に難しい問題であるアンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である

定理(Cartan-Serre-Grothendieck):

XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、

i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0

となることが必要十分である

定理(Nakai-Moishezon):

Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプであるためには、Xの任意1次元以上の既約部分多様体Yに対して、

D^dim(Y).Y>0

となることが必要十分である

文章2

kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は

E(X) = E_0⊕E_1⊕E_2⊕...

と分解し、各E_dはXのd次元部分多様体ホモトピー同値からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。

このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、

・[Y] = [Q×Z] + [R]

・dim(R)<dim(Z)

が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。

dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。

このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるもの存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである

定理:

各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は

f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}

と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である

Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素誘導する。この作用素に関しては、次の定理重要である

定理(Hilbert):

Xがコンパクト代数群であれば、完備Euclid環に誘導された線形作用素有界作用素である

以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。

定理(Hilbert):

上述の定義における単純サイクルによる基底は、完備Euclid環の固有自己作用素固有ベクトルになる。

2020-06-21

リモートの促進

これで、リモートが促進できることはわかった。

経済効率問題がないこともわかった。

私は、どちらかというと否定派だけど、

推進派の人が、推進するのを無理に止めるものでもない。

基本はオフィスのほうがいいと思うけど、推進派の人が段階的かつ実験的にリモート化するのは反対しきれない流れを感じている

20年分のノウハウもある。開示請求をうけることもあるし、そうでなくても、内々につたえることもできる。とはいえ、たとえば微分積分を解の公式も知らない人に教えるのは時間がかかる

相手に応じて、段階的に伝えてく。すくなくとも自分たち技術を残していくことには反対はないし、基本そういうものだろうから、それは安心してもらっていいと思う。

ただ、原則的には否定的ではあるが十分なノウハウがあって、備えがある人は、応援する。

繰り返しになるが、原則的には否定的だが、だめではない。

2020-06-20

誤解が多い

ようするに、微分積分中学生に教えてもしょうが無い。

数1がいいとか数学Ⅲがいいとかそういうぐらいが精一杯。

でも、それで十分。

おれもだいたいで十分なことが多い。

もっと高度な道具が、高価で買えない そういうことはあるだろうが。

そもそも無料の教材はきちんとできているのか? その次のステップへの行き方というのは確かにおれもわからない部分が多い。

だけど、結構良い教材が色んな所に落ちているし、オープンソースは昔より充実している。

2020-06-16

anond:20200616233714

1/(1 + x) = 1 - x + x^2 - x^3 + ...

xで微分して

-1/(1 + x)^2 = -1 + 2x - 3x^2 + ...

x = 1を代入して

1/4 = 1 - 2 + 3 - 4 + ...

2020-06-14

anond:20200610191037

そもそもこんな単純な初等関数微分積分なんか、習得して当たり前。そんなもんを「覚えなければいけない」なんて感じるのは、意識問題

アッハイ

2020-06-10

anond:20200610173619

覚える必要のあることなんて何一つない。ただ、覚えると便利だから覚えているだけ

そんなことは言っていない。

もちろん導出に数十分かかる公式なんかは現実的には覚えないとしょうがないんだけどね。

少なくとも高校数学でそんな公式あるの?

あと、「導出に時間がかかるから覚える」なんてことも言っていない。

文中で挙げた例では、加法定理証明などはそこそこ長いが、こいつは回転が1次変換であることと、(1, 0), (0, 1)が平面の基底であるという当たり前の事実が分かっていれば、cos(π/2+θ)とsin(π/2+θ)の値だけから決まるということが分かる。

でもそれは本質的ではなく、「理論上は解ける」ことの方が重要増田はそういう話をしているんだろう。

そんな話はしていない。

もちろん例外はいくらでもある。例えば積分の(基本的な)公式は覚えるしかない。

積分基本的公式って何?

置換積分や部分積分公式は、合成関数や積の微分対応するんだから、覚える必要ないよね。

log(x)の積分なんかはテクニカルかも知れんが、部分積分適用できる好例だし、そもそもこんな単純な初等関数微分積分なんか、習得して当たり前。そんなもんを「覚えなければいけない」なんて感じるのは、意識問題

まあ結果を覚えるというより導出を覚えるべきなんだけど、

そんなことも言っていない。

テクニカルアイデアが大量に詰まっているので「容易に自分で思いつける」類のものではない。

そもそも、「覚えなければいけない」の対義語は「自分でおもいつく」じゃない。

日本語理解おかしいんだよ。

結局覚えるべきものはいくらでもある。でも増田はそういう専門的な話はしていないと思う。

一貫して覚える必要のあるものほとんどないと言っている。

また、定理などを覚えるべきかどうかについて、高校数学大学数学で違いがあるとも言っていない。

2020-06-03

双対空間の具体例って何?

内積を取る線形汎関数

Vを内積(・,・)をもつn次元ベクトル空間としv∈Vを任意の元とすると、w∈Vに対して(v, w)を対応させる写像線形汎関数であって、この写像の全体はn次元ベクトル空間になるからV*と同型

微分形式

微分多様体の各点の1次微分形式は、その点の接ベクトル空間双対空間

コホモロジー

ホモロジーの各次数のチェインの双対空間を取ると、コホモロジーになる

エンジニアに対する見積もり あるある

微分はできるけど 積分が書いてないな できないんだろうな 微分だけできてもなぁ

 ↓

離散コサイン変換はできるんだろうけど、フーリエ級数展開微分積分ができないとつかえねーよな、エンジニアとして

 ↓

割り算ができても、掛け算ができなきゃ、算数ができるとは言えない

2020-05-28

anond:20200528082945

微分積分を教える前に、加速度を教えることは可能だが、そうすると、加速度は単調増加であると教えておかないといけないが、いまそれがないのではないか

そして、なぜ、小学校教育などが始まって10年して、みてみたら、そういう状況になっているのか?など

2020-05-27

anond:20200527134829

数学が嫌い、とかい人間大学数学が必修になるような学科に来ているのが間違いだろ……。

 

そんな検討高校生までに終わらせておけ。

そしてお前の考えるような対策も、高校生ときにやることだし、だから対策内容ももっと直接的なものになるよ。

例えば数学を好きになってもらう方法として代表的方策は、三角関数微分積分実用性を知るために、実際に用地測量作業を行ってみる、などがあるわな。

大学に入って最初にやることが「実数構成」では、数学が嫌いになるのは必然

そういうことはいずれは、(数学科なら)いざとなったら分かるレベルにならないといかんが、大学一年生がやって実りあるものとは思えない。

理学系にいくにせよ工学系にいくにせよ、教養数学でやるべきなのは高校微分積分の復習をしつつ、

のような基本的な結果をしっかり理解して使えるようになることじゃないだろうか。

こういうものを示すのには実数連続性を厳密に定式化しなければいけないが、一年相手にわざわざ「デデキント切断に順序構造を導入して」などとやらずとも、

空ではない上に有界実数の集合には上限が存在する。

というワイエルシュトラス定理を認めれば十分である。これはデテキント切断による実数の特徴付けと同値であり、他の命題を示す際にも扱いやすく、直感的にも理解できる。

思うに、あらゆることを厳密にやるのが大学数学の「伝統」や「洗礼」などと言った価値観を持っている人が多い気がする。もちろん、それは一面では正しいし、高校数学までは曖昧だった部分がはっきりすることに喜びを感じる学生もいるだろう。しかし、たいていの学生は、数学が嫌いになるんじゃないだろうか。

2020-05-22

中学高校数学ユークリッド幾何学不要である

中学高校数学から、いわゆるユークリッド幾何学廃止してよい。理由単純明快で、何の役にも立たないからだ。

大学に入ったら、どの学部に行っても、「補助線を引いて、相似な三角形を作って〜」などと言ったパズルをやることは絶対にない。メネラウス定理高校卒業以降(高校数学指導以外で)使ったことのある現代はいないだろう。こういうことは、別に高等数学知識の無い高校生でも、常識で考えて分かると思う。たとえば工学で、弧長や面積を測定する機器必要になったとして、補助線パズル適用できるごく一部の多角形などしか測れないのでは話にならない。現代数学および科学技術を支えているのは、三角関数ベクトル微分積分などを基礎とする解析的な手法である

もちろん、たとえば三角比定義するには「三角形内角の和は180°である」とか「2角が等しい三角形は相似である」等のユークリッド幾何学定理必要になる。そういうものを全て廃止せよと言っているわけではない。しかし、余弦定理まで証明してしまえば、原理的にはユークリッド幾何学問題は解ける。また、実用上もそれで問題ない。したがって、余弦定理を初等的な方法で示したら、ユークリッド幾何学手法はお役御免でよい。

高校数学では、以下の分野が特に重要だと思われる。

これらはいずれも、高等数学を学ぶ際に欠かせない基礎となる分野である。仮にユークリッド幾何学が何らかの場面で使われるとしても、いくらなんでも微分積分などと同等以上に重要だと主張する人はいないだろう。

現在、これらの分野は十分に教えられていない。微分方程式と一次変換は現在2020年5月)のカリキュラムでは教えられておらず、ベクトル文系範囲から除かれ、代わりにほとんど内容の無い統計分野が教えられている。また、高校生にもなって、コンパスと定規による作図みたいなくだらないことをやっている。本当に、どうかしているとしか言い様がない。

ユークリッド幾何学を教えるべきとする根拠代表的ものは、証明の考えに触れられるというものだ。つまり代数や解析は計算主体であるが、ユークリッド幾何学証明主体なので、数学的な思考力を鍛えられるというものだ。

しかし、これは明らかに間違っている。別にユークリッド幾何学の分野に限らず、数学のあらゆる命題証明されなければならないからだ。実際、高校数学教科書を読めば、三角関数加法定理や、微分ライプニッツ則など、証明が載っている。そもそも数学問題は全て証明問題である関数極値問題は、単に微分が0になる点を計算するだけではなく、そこが実際に極値であることを定義に基づいて示さねばならない。数学思考力を養うのに、ユークリッド幾何学が他の分野より効果的だという根拠は無い。

2020-05-21

暗記数学が正しい

受験生諸君は、悪質な情報に惑わされないように。

暗記数学の要旨

和田秀樹らによるいわゆる「暗記数学」の要点をまとめると、以下のようになるだろう。

数学重要なのは、技巧的な解法をひらめくことよりも、基礎を確実に理解することである

これは従来、数学入試問題を解くのに必要なのが曖昧模糊とした「ひらめき」や「才能」だと思われていたことへのアンチテーゼである。「暗記」という語はその対比であり、特別な才能がなくとも、基礎事項を確実に習得することで、入試を通過できる程度の数学力は身に付くことを主張している。

そもそも大学入試大学研究をする上で重要知識や考え方の理解度を問うているわけであって、徒な難問を出して受験生を試しているわけではない。したがって、そのような重要事項(つまり教科書の基礎事項や、数学活用する上で頻繁に出てくるような考え方)を身に付けるのが正攻法である

そのための教材としては、エレガントな別解や難問に拘ったものよりも、基礎事項や入試頻出の問題網羅したスタンダードものが良いとされる。

数学理解するには、具体的な証明計算例を通じて行うのが効果である

これはいわゆる解法暗記である。なぜ、具体的な実例を学ぶのかと言えば。数学に限らず、具体的な経験と関連付けられていない知識理解できないためである

実際、教科書を読んだばかりの人の多くは、自身知識入試問題との間にギャップを感じる。たとえば、ベクトル内積定義線形性等の性質を知っただけでは、それを幾何学問題に応用するのは難しいだろう。教科書を読んだばかりの段階というのは、将棋で喩えれば駒の動かし方を覚えただけのようなもので、実戦で勝つのは難しい。実戦で勝つには、定跡や手筋のような、ルールだけから直ちに明らかではない、駒の活用法を身に着ける必要がある。

将棋の定跡を初心者独自発見するのが難しいのと同様に、数学自明でない実例を見出すことも難しい。そのほとんどは歴代数学者が生涯をかけて究明してきたものなのだから、当然であるしかし、現代高校生には既に教科書入試問題がある。特に入試問題は、数学専門家が選りすぐった、良質な実例の宝庫である受験生はこれを通じて数学概念活用のされ方や、論理の展開等を深く理解するべきである

そしてこれは、大学以降で数学工学を学ぶ際も同様である特に大学以降の数学では、抽象的な概念が中心になるため、ほとんどの大学教員は、具体的な実例を通じて理解しているかを非常に重んじる。たとえば、セミナー大学入試等では、以下のような質問が頻繁になされる。

  • ある概念(群やベクトル空間など)の具体例を言えるか。
  • 逆に、そうでないものの具体例を言えるか。
  • ある定理を具体的な状況に適用すると何が言えるか。
  • ある定理仮定を除いて、反例を構成できるか。

論理ギャップや式変形の意味等の不明点は曖昧なままにせず、人に聞いたり調べたりして、完全に理解すべきである

教科書記述や、解いた問題は完全に理解すべきである。つまり

といったことを徹底的に自問するべきである自分理解絶対に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけない。「微分極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題からとりあえず微分してみる」というような勉強は良くない。

そして、理解できたと思ったら、教科書の一節や問題の解答を何も見ずに再現してみる。これはもちろん、一字一句を暗記するということではなく、上に書いたような知識有機的な繋がりを持って理解できているのかを確認することである。ある事実が、どのような性質を前提としていて、どのように示されるのかという数学ストーリー理解していれば、何も見ずともスラスラ書けるはずだ。

また、問題を解く際は、いきなり答えを見るのではなく、一通り自分で解答を試みてから解答を見ることが好ましい。実際に手を動かすことにより、分かっている部分とそうでない部分が明確になるからである

以上のことは、何も受験数学に限った話ではない。他の科目でも、社会に出て自分で調べたり考えたりしたこと他人に発表するときでも同様である

暗記数学に賛成している人・反対している人

一般的に、暗記数学に賛成している人。

要するに、数学の専門知識社会的常識のある人は暗記数学に賛成しているようだ。

逆に、反対している人。

反対しているのは、金儲けが目的で目立つことを言っているか、何かをこじらせて勉強法に無駄な拘りを持っている人たちのようだ。

----

追記

思うに、アンチ暗記数学派というのは、精神根底に以下のような考えを持っているのではないのだろうか?

一部の人は、大学入試では「ひらめき」「発想力」「頭の柔らかさ」「地頭の良さ」などを試すために敢えて典型的ではない問題を出しているとか、「天才」を発掘するために常人には解けないような難問を出題していると思っているのかも知れない。しかし、先にも述べたように、大学入試は、大学に入って研究するための基礎学力を測っており、入試問題は、そこで問われている知識や考え方が重要から出題されるわけである。したがって、そういう重要知識や考え方を十分に身に着けていれば受かる。ただそれだけの話である。そして、良識ある教育者は、数学重要なところが分かっているから、それに基づいて教材や予想問題を作っている。そうでない人はもしかしたら、大学普通受験生には解けないように徒に問題を複雑にしていると思い込み、ひねくれた問題を教えているのかも知れない。

また、「数学自体重要ではなく、数学を通じて思考力を鍛えることが重要」とか「受験勉強社会に出て嫌な仕事我慢するための訓練」等と思っている人もいるかも知れない。特に前者は、自称数学好きにもいるようだ。しかし、深く考えるまでもなく、大学受験数学が課せられるのは、大学研究するために(少なくとも、教員が望む水準で)絶対必要からである。そして何度も言うように、入試で問われるのは、研究のために必要知識や考え方であり、「頭の柔らかさ」などではない。また、数学をそれほど使わない学部にも、受験数学が課せられるのは、多くの大学には転部等の制度があり、文学部から経済学部とか、農学部から工学部に転部するような事例は珍しくないかである

上記2つに共通するのは、「理解」よりも「ひらめき」等のオカルティックなものを重視することである。これは、上に述べた胡散臭い教育業者や、受験生に絡んでる学歴コンプが暗記数学に反対する理由と符合する。金儲けがしたい受験業者にとって、「基礎を確実に理解することが重要」と言うよりも「入試本番に典型問題は出ないから、ひらめきが大事(。そして、ウチの教材を使えば、それが鍛えられる)」などと言った方が、客は集まりやすいだろう。また、SNS等で受験生教員などに絡んでる奴にしても、数学本質理解できず霊感的なもの価値見出しおかし勉強理論かぶれてしまったと考えれば納得がいく。

繰り返しになるが、受験生諸君はそういう悪質な情報に惑わされてはいけない。

2020-05-08

anond:20200508021424

それはどうだろ?

たとえばワイは学生時代数学からっきしやったけど

適当ネットで公開されてるブラウザアプリ微分積分ができる。

もちろんワイ自身にはどんな計算理屈微分積分がされているかチンプンカンプン

だけど理屈を知らんくてもツールに「微分積分しとけ」って言っとけば微分積分した数値はできる。

ならどうしてわざわざ数学知識自分の脳ミソにダウンロードして天才数学者になる必要がある?

脳の内側で処理することにこだわらず、外側のツール計算すれば十分やん?

2020-05-03

anond:20200503170035

大学レベル微分積分つかうようなプログラムを書け

っていうのをどうやって、高卒がやるんだ?というのと同じで(馬鹿にしているわけではない)

その技術を扱えるようになる費用って労働者負担な分も多いけど

それって、そういうもんだ夜ね

大学数学扱える人募集とか

プログラムできる人募集とか

両方できる人募集とか

2020-04-29

anond:20200427223840

掛け算が足し算の繰り返しであることが理解できてないんだよ。

1×3 = 1+1+1 ( 1を3回足す )

15km/h * 3h = 15km + 15km + 15km ( 15km 動く、を3回繰り返した )

この前、子供算数問題を解く様子を見ていたら、ちょうど似たようなことが理解できてないことに気づいたんだよね。

算数四則演算とか高校微分積分だって、世の中の人や物の動きと対比づけて理解できるかが重要だよ。これらの概念右から左からからも上からもあらゆるものに当てはめてみて理解を深める、納得する、ということを頭が柔らかいうちにやらないと、理系にはなれない。。。

ログイン ユーザー登録
ようこそ ゲスト さん