量子力学は、測定が行われるまで粒子は重ね合わせの状態、つまり同時に 2 つの状態にある可能性があることを示唆している。
そのとき初めて、粒子を記述する波動関数は 2 つの状態のいずれかに崩壊する。
量子力学のコペンハーゲン解釈によれば、波動関数の崩壊は意識のある観察者が関与したときに起こる。
意識が崩壊を引き起こすのではなく、波動関数が自然に崩壊し、その過程で意識が生じるとペンローズは示唆した。
この仮説の奇妙さにもかかわらず、最近の実験結果は、そのようなプロセスが脳の微小管内で起こっていることを示唆している。
意識はすべてを包括しており、現実そのものを構成しており、物質世界は単なる幻想である、と言う人もいる。
意識は幻想であり、実際の現象的な経験や意識的な制御の感覚はないと言う人も。
この見解によれば私たちは「ただの無力な観客であり、ただ乗り物に乗っているだけ」である。
そして、脳をコンピューターとして見る人もいる。
脳機能は歴史的に、蝋の「封印リング」としての記憶という古代ギリシャの考え方から、電信交換回路、ホログラム、コンピューターに至るまで、現代の情報技術と比較されてきた。
神経科学者、哲学者、人工知能 (AI) の支持者は、脳を、可変強度のシナプスで接続された単純なアルゴリズムのニューロンからなる複雑なコンピューターに例えている。
これらのプロセスは、意識を持たない「自動操縦」機能には適しているかもしれないが、意識を考慮することはできない。
意識を基本的なものとして捉え、宇宙の微細な構造や物理学に何らかの形でつながっていると考える人たちもいる。
例えば、意識は量子領域と古典的領域の間の境界における活動である「量子波動関数の崩壊」という客観的還元プロセスに関連しているというペンローズの見解が含まれる。
基礎物理学とのそのようなつながりをスピリチュアルなもの、他者や宇宙とのつながりと見る人もいるが、意識が現実の基本的な特徴であり、生命そのものよりもずっと前に発達したものであることの証拠であると考える人もいる。
ペンローズは、客観的還元を意識の科学的根拠としてだけでなく、量子力学の「測定問題」の解決策としても提案していた。
20世紀初頭以来、量子粒子は、シュレディンガー方程式に従った波動関数として数学的に記述され、複数の可能な状態および/または位置を同時に重ね合わせて存在できることが知られてきた。
なぜなら、初期の量子研究者にとって、測定または意識的な観察という行為自体が、波動関数を明確な状態と位置に「崩壊」させるように見えたからである。